
cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615: Formal Specification and
Verification of Programs 2019

Lecture 17: Model Checking

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-10-17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 2

Key issues with abstract interpretation

I Predefined precision – may not be sufficient for the program at hand

I Verification data structure never blows up (may be a good thing?)

I Bug finding is not naturally integrated
I If verification fails, no counterexample!!!!!
I A very big problem

I Precision control is not flexible

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 3

Model checking - a different approach

I explore states — concrete/symbolic/abstract states

I Blows up the memory usage — we have loads of it

I Needs only two operations depending on program semantics and
abstraction domain

1. post (sp/sp#)
2. comparison (v)

I No need of sophisticated join t and widening O operators.

Let us explore model checking!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Topic 17.1

Concrete model checking - enumerate reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 5

Isn’t enumeration impossible?

I Explore the transition graph explicitly

I If edge labels are guarded commands then finding next values are trivial
I light weight machinery

I After resolving non-determinisms, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 6

Concrete model checking
Algorithm 17.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

infinite set.
what?

Exercise 17.1
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 7

Example: concrete model checking

Example 17.1

Consider the following

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist ∪ {(`1, [8, 8])}

Add to reach, since there are no more succes-
sors:
reach := reach ∪ {(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 8

Search strategy : depth first search (DFS)

I search deeper states first

I worklist is a stack

I Often, the depth is bounded by threshold in tools.
I If the search visits a state at the threshold depth, the state is moved from

worklist to reach set without considering the successors of the state.
I If the state is visited again via a shorter depth, the state needs to be

explored again.

Exercise 17.2
a. When would you like to use DFS?
b. Modify the previous algorithm to write down the DFS version.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 9

Search strategy: breadth first search(BFS)

I search shallow states first

I If finite successors, no need to put any artificial bounds on breadth

I On time out, we may claim some guarantees of partial completeness

Exercise 17.3
a. Suggest a data structure for worklist
b. When do we have infinite successors?
c. When would you like to use BFS?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 10

Directed search strategies

I The search is guided by the position of error states in the state space

I Assign an estimate of reaching error from each state

I Explore the state from wroklist that has least estimate

I The estimation function should have a low cost to compute.

I The estimation function should always underestimate the distance to
error.(why?)

I In the area of artificial intelligence, there has been a few proposals to do
directed search
I A∗

I IDA∗

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 11

Directed search strategies: A∗

I Worklist is a priority queue,

I Priority weight is assigned to a state in worklist based on sum of
I the cost of reaching the state and
I the estimate on cost of reaching error from the state

I Each time a new state is explored, we update estimates of the
neighbours.

Exercise 17.4
Suggest an estimate function in the previous example

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 12

Optimizations: exploiting structure

I Symmetry reduction
I e.g. MAC address of client is irrelevant in a banking software.
I test one; test all.

I Assume guarantee — for modular software
I Let us suppose a software consist of two components C1 and C2

I We define specification for each component (Ai ,Gi)
I The specification implies that we assume Ai on inputs of Ci and the

component guarantees Gi on outputs.
I For each component i , we assume Ai and G1−i and model check if Gi

holds.

This approach simplifies each verification task.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 13

Optimizations: exploiting structure II

Partial order reduction — for concurrent systems

I If order of two operations is irrelevant, then explore only one of the
order.

Example 17.2

Let us suppose one thread opens a file and another sends a message on
network.

Since the activities have no dependence between them, we need not consider
both the orders between them.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 14

Optimizations: reducing space

I hashed states - reach set contains hash of states (not sound)

I Stateless exploration - no reach set (redundant)

Trade-off among time, space, and soundness

Exercise 17.5
a. Write concrete model checking using hash tables
b. What is the standard hash function used in standard hash tables in C++
and Java?
c. Why stateless model checking is useful?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 15

Blackbox model checking

We may have binary of the program and access to internal state.

We drive the program via various inputs and keep the record of the input
choices such as

I explicit input

I scheduling of threads

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 16

Proof and counterexample

Definition 17.1
A proof of a program is an object that allows one to check safety of the
program using a low complexity (preferably linear) algorithm
in the size of the object.

Example 17.3

In our concrete model checking algorithm, reach set is the proof. The
checker needs to find that no more states can be reached from reach.

Definition 17.2
A counterexample of a program is an execution that ends at `e .

A verification method may produce three possible outcomes for a program

I proof

I counterexample

I unknown or non-termination

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 17

Enabling counterexample generation
Algorithm 17.2: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅; parents := λx .NaN ;

2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach v ′ s.t. F (v , v ′) is sat and (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)}; parents((`′, v ′)) := (`, v);

10 if (`e , v) ∈ reach then
11 return Unsafe(traverseToInit(parents, (`e , v)))
12 else
13 return Safe

Exercise 17.6
add data structure to
report counterexample

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Topic 17.2

Symbolic methods

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

Why symbolic?

To avoid, state explosion problem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 20

Symbolic methods

Now, we cover some methods that try/avoid to compute lfp

I Symbolic model checking

I Constraint based invariant generation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 21

Symbolic state

Definition 17.3
A symbolic state s of P = (V , L, `0, `e ,E) is a pair (`,F), where

I ` ∈ L

I F is a formula over variables V in a given theory

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 22

Symbolic model checking
Algorithm 17.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

We need efficient implementa-
tions of various logical operators!

Exercise 17.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 23

Example: symbolic model checking

Example 17.4

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,
worklist := worklist ∪ {(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,
worklist := worklist ∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 17.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 24

Proof generation

If the symbolic model checker terminates with the answer Safe, then it must
also report a proof of the safety, which is the reach map.

It has implicitly computed a Hoare style proof of P = (V , L, `0, `e ,E).

(`, ρ(V ,V ′), `′) ∈ E {reach(`)}ρ(V ,V ′){reach(`′)}

If an LTS program has been obtained from a simple language program then
one may generate a Hoare style proof system.

Exercise 17.9
Describe the construction for the above translation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 25

End of Lecture 17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Concrete model checking - enumerate reachable states
	Symbolic methods

