
cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615: Formal Specification and
Verification of Programs 2019

Lecture 18: Hardware Model Checking - BDD

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-11-05

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 2

Efficient symbolic operators

A symbolic model checker needs the following operations.

I ∨
I ⇒ checker

I sp

In hardware, we have only Boolean variables. Therefore, a finite state space.

In hardware verification, we may have effective operations for the above.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 3

Topic 18.1

Hardware model checking — Binary Decision Diagrams

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Symbolic model checking and Hardware verification

Symbolic model checking for hardware using BDD Since hardware has only
Boolean variables

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 5

First practical model checker

Binary Decision Diagram(BDD) is a data structure that enabled the first
practical model checker.

BDDs came to prominence in early 90s.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Computation, 1992.

BDD is no more the best known method. But, it is worth exploring.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 6

Partial evaluation

Let us suppose a partial model m s.t. Vars(F) 6⊆ dom(m).
We can assign meaning to m(F), which we will denote with F |m.

Definition 18.1
Let F be a formula and m = {p1 7→ b1, ..} be a partial model.

Let F |xi 7→bi ,

{
F [>/xi] if bi = 1

F [⊥/xi] if bi = 0.

The partial evaluation F |m be F |p1 7→b1 |p2 7→b2 | . . . after some simplifications.

For short hand, we may write F |p for F |p 7→1 and F |¬p for F |p 7→0.

Exercise 18.1
Prove (F |p ∧ p) ∨ (F |¬p ∧ ¬p) ≡ F

Commentary: We have seen similar definition the proof complexity lecture.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 7

Example : partial evaluation

Example 18.1

Consider F = (p ∨ q) ∧ r

F |p = ((p ∨ q) ∧ r)[>/p] = (> ∨ q) ∧ r ≡ > ∧ r ≡ r

Exercise 18.2
Compute

I ((p ∨ q) ∧ r)|¬p
I ((p1 ⇔ q1) ∧ (p2 ⇔ q2))|p1 7→0,p2 7→0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 8

Decision branch

Due to the theorem in exercise 18.1, the following tree may be viewed as
representing F .

p

F |¬p F |p

Dashed arrows represent 0 decisions and solid arrows represent 1 decisions.

Example 18.2

Consider (p ∨ q) ∧ r

p

q ∧ r r

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 9

Decision tree

We may further expand F |¬p and F |p until we are left with > and ⊥ at the
leaves. The obtained tree is called the decision tree for F .

Example 18.3

Consider (p ∨ q) ∧ r

p

q r

⊥ >⊥ r

⊥ >

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 10

Binary decision diagram(BDD)
If two nodes represent same formula, we may rewire the incoming edges to
only one of the nodes.

Definition 18.2
A BDD is a finite DAG such that

I each internal node is labeled with a propositional variable

I each internal node has a low (dashed) and a high child (solid)

I there are exactly two leaves one is labelled with > and the other with ⊥

Example 18.4The following is a BDD for (p ∨ q) ∧ r

p

q

r
r

⊥ >

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 11

Ordered BDD (OBDD)

Definition 18.3
A BDD is ordered if there is an order < over variables including > and ⊥ s.t.
for each node v, v < low(v) and v < high(v).

Example 18.5

The following BDD is not an ordered BDD

p

q r

r q

⊥ >

Exercise 18.3
a. Convert the above BDD into a formula
b. Give an ordered BDD of the formula

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 12

Reduced OBDD (ROBDD)

Definition 18.4
A OBDD is reduced if

I for any nodes u and v, if var(u) = var(v), low(u) = low(v),
high(u) = high(v) then u = v

I for each node u, low(u) 6= high(u)

Example 18.6

OBDD ROBDD

p

q

r
r

⊥ >

p

q

r

⊥ >

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 13

Converting to ROBDD

Any OBDD can be converted into ROBDD by iteratively applying the
following transformations.

1. If there are nodes u and v such that var(u) = var(v), low(u) = low(v),
high(u) = high(v) then remove u and connect all the parents of u to v .

2. If there is a node u such that low(u) = high(u) then remove u and
connect all the parents of u to low(u).

Exercise 18.4
Prove the above iterations terminate.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 14

Canonical ROBDD

Theorem 18.1
For a function f : Bn → B there is exactly one ROBDD u with ordering
p1 < · · · < pn such that u represents f (p1, . . . , pn).

Proof.
We use the induction over the number of parameters.

base (n=0): There are only two functions f () = 0 and f () = 1, which are
represented by nodes ⊥ and > respectively.

step (n > 0): Assume, unique ROBDD for functions with n parameters.
Consider a function f : Bn+1 → B.

Let f0(p2, . . . , pn+1) = f (0, p2, . . . , pn+1) which is represented by ROBDD u0.
Let f1(p2, . . . , pn+1) = f (1, p2, . . . , pn+1) which is represented by ROBDD u1.
...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 15

Canonical ROBDD (cond.) II

Proof(contd.)

case u0 = u1:

Therefore, f = f0 = f1. Therefore, u0 represents f .

Assume there is u′ 6= u0 that represents f .

Therefore, var(u′) = p1 (why?), low(u′) = high(u′) = u0.

Therefore, u′ is not a ROBDD. ...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 16

Canonical ROBDD (cond.) III

Proof(contd.)

case u0 6= u1:

Let u be such that var(u) = p1, low(u) = u0, and high(u) = u1.

Clearly, u is a ROBDD.

Assume there is u′ 6= u that represents f . Therefore, var(u′) = p1(why?).

Due to induction hyp., low(u′) = u0, and high(u′) = u1.

Due to the reduced property, u = u′.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 17

Satisfiablility via BDD

Build a ROBDD that represents F and unsat formulas have only one node ⊥.

Benefits of ROBDD

I If intermediate ROBDDs are small then the satisfiability check will be
efficient.

I Cost of computing ROBDDs vs sizes of BDDs

I Due to the canonicity property, ROBDD is used as a formula store

I Various operations on the ROBDDs are conducive to implementation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Issues with ROBDD

I BDDs are very sensitive to the variable ordering. There are formulas
that have exponential size ROBDDs for some orderings

I There is no efficient way to detect good variable orderings

Exercise 18.5
Draw the ROBDD for

(x1 ∧ x2) ∨ (x3 ∧ x4)

with the following ordering on variables x1 < x3 < x2 < x4.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

Topic 18.2

Algorithms for BDDs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 20

Algorithms for BDDs

Next we will present algorithms for BDDs to illustrate the convenience of the
data structure.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 21

Global data structures

The algorithms maintain the following two global data structures.

store = (Nodes, low , high, var) := ({⊥,>}, λx .null, λx .null, λx .null)

reverseMap : (Vars× Nodes × Nodes)→ Nodes := λx .null

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 22

Constructing a BDD node

Algorithm 18.1: MakeNode(p, u0, u1)

Input: p ∈ Vars, u0, u1 ∈ Nodes
1 if u0 = u1 then return u0 ;
2 if reverseMap.exists(p, u0, u1) then return

reverseMap.lookup(p, u0, u1) ;
3 u := store.add(p, u0, u1); reverseMap.add((p, u0, u1), u);

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 23

Constructing BDDs from a formula

Algorithm 18.2: BuildROBDD(F , p1 < · · · < pn)

Input: F (p1, . . . , pn) ∈ P, p1 < · · · < pn : an ordering over variables of F
1 if n = 0 then
2 if F ≡ ⊥ then return ⊥; else return >;

3 u0 := BuildROBDD(F |¬p1 , p2 < · · · < pn);
4 u1 := BuildROBDD(F |p1 , p2 < · · · < pn);
5 return MakeNode(p1, u0, u1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 24

Conjunction of BDDs

Algorithm 18.3: ConjBDDs(u, v)

Input: u and v ROBDDs with same variable ordering
1 if u = ⊥ or v = > then return u;
2 if u = > or v = ⊥ then return v ;
3 u0 := low(u);u1 := high(u);pu := var(u);
4 v0 := low(v);v1 := high(v);pv := var(v);
5 if pu = pv then
6 return MakeNode(pu,ConjBDDs(u0, v0),ConjBDDs(u1, v1))

7 if pu < pv then
8 return MakeNode(pu,ConjBDDs(u0, v),ConjBDDs(u1, v))

9 if pu > pv then
10 return MakeNode(pu,ConjBDDs(u, v0),ConjBDDs(u, v1))

Exercise 18.6
a. Write an algorithm for computing disjunction of BDDs
b. Write an algorithm for computing not of BDDs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 25

Restriction on a value

Algorithm 18.4: Restrict(u, p, b)

Input: u ROBDD with same variable ordering, variable p, b ∈ B
1 u0 := low(u);u1 := high(u);pu := var(u);
2 if pu = p and b = 0 then
3 return Restrict(u0, p, b)

4 if pu = p and b = 1 then
5 return Restrict(u1, p, b)

6 if pu < p then
7 return MakeNode(pu,Restrict(u0, p, b),Restrict(u1, p, b))

8 if pu > p then
9 return u

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 26

Impact of BDDs

I In 90s, BDDs revolutionized hardware verification

I Later other methods were found that are much faster and the fall of
BDD was marked by the following paper,

A. Biere,A. Cimatti,E. Clarke,Y. Zhu,
Symbolic Model Checking without BDDs, TACAS 1999

I However, BDDs are still the heart of various software packages

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 27

Topic 18.3

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 28

Take and of the BDDs

Exercise 18.7
Construct ROBDD of the following formula for the order p < q < r < s.

F = (p ∨ (q ⊕ r) ∨ (p ∨ s))

Let u be the ROBDD node that represents F .
Give the output of Restrict(uF , p, b)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 29

Variable reordering

Exercise 18.8
Let u be an ROBDD with variable ordering p1 < ... < pn.
Give an algorithm to transforming u into a ROBDD with ordering
p1 < .. < pi−1 < pi+1 < pi < pi+2 < .. < pn.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 30

BDD-XOR

Exercise 18.9
Write an algorithm for computing xor of BDDs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 31

BDD encoding

Exercise 18.10
Consider a and b be 2 bit wide bit-vectors. Write BDD of each of three
output bits in the following bit-vector addition.

a + b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 32

BDD model counting

Exercise 18.11
a. Give an algorithm for counting models for a given ROBDD.
b. Does this algorithm work for any BDD?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 33

End of Lecture 18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Hardware model checking — Binary Decision Diagrams
	Algorithms for BDDs
	Problems

