
cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615: Formal Specification and
Verification of Programs 2019

Lecture 19: Practical model checking

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-11-05

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 2

Limited verification

Full verification is a very hard goal.

Soundiness: May be reduced objectives give us reasonable guarantees.

We will look at two popular methods that have been widely used.

1. Bounded model checking

2. Concolic testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 3

Topic 19.1

Bounded Model checking

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Avoid complete fixed point computation

I For many programs symbolic model checking does not terminate

I Lets compromise in computing fixed point

I We can symbolically execute up to a fixed depth

I Very useful tool in falsification(bug finding)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 5

Bounded model checking(BMC)

Algorithm 19.1: Bounded model checking

Input: P = (V , L, `0, `e ,E) and bound b
1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>, 0)};
3 while worklist 6= ∅ do
4 choose (l ,F , d) ∈ worklist;
5 worklist := worklist \ {(`,F , d)};
6 if d ≤ b and ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ), d + 1)};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe up to depth b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 6

Implementing BMC

A BMC tool is not implemented as discussed earlier

The program is turned into a giant satisfiability problem and solved using a
satisfiability solver.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 7

Bounding using loop unrolling

I Unroll the loops a fixed number of times, say n, and add appropriate
if-conditions for early exists from the loop.

I Modify recursive function calls similarly

In some execution of the original programs, if a loop executes more than n
times then the modified program will reach a dead end.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 8

Example: bounded loop unrolling

Example 19.1

Original program
x=0;

while (x < 2) {

y=y+x;

x++;

assert(y < 5);

}

Unrolled the loop three times
x=0;

if(x < 2) {

y=y+x;

x++;

assert(y < 5);

if(x < 2) {

y=y+x;

x++;

assert(y < 5);

if(x < 2) {

y=y+x;

x++;

assert(y < 5);

}

if(!(x < 2)) goto DEAD_END;

}

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 9

SSA encoding and SMT formula
The loop free program is translated into single static assignment(SSA) form.

I After every assignment fresh names are given to the variables

I At join points instructions are added to feed in correct values

Example 19.2

Original program
foo(x,y) {

x=x+y;

if (x!=1)

x=2;

else

x++;

assert(x<=3);

}

Program after SSA transformation

foo(x0 ,y0) {

x1 = x0 + y0;

if(x1 != 1)

path_b = 1

x2 = 2;

else

path_b = 0

x3 = x1 + 1;

x4 = path_b ? x2 : x3;

assert(x4 <= 3);

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 10

SSA to SMT formula

An SSA program can be easily translated into a formula.

Example 19.3

Original program

foo(x0 ,y0) {

x1 = x0 + y0;

if(x1 != 1)

path_b = 1

x2 = 2;

else

path_b = 0

x3 = x1 + 1;

x4=path_b?x2:x3;

assert(x4 <= 3);

}

QF LIA formula for the SSA program

(assert (= x1 (bvadd x0 y0)))

(assert (= x2 #x00000002))

(assert (= x3 (bvadd x1 #x00000001)))

(assert (= path_b (distinct x1 1))

(assert (ite path_b (= x4 x2)

(= x4 x3)))

(assert (not (bvsle x4 3)))

If the above is sat, the program has a bug

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 11

SMT Input
The SMT input with all the needed declarations.

(set-logic QF_BV)

(declare-fun x0 () (_ BitVec 32))

(declare-fun x1 () (_ BitVec 32))

(declare-fun x2 () (_ BitVec 32))

(declare-fun x3 () (_ BitVec 32))

(declare-fun x4 () (_ BitVec 32))

(declare-fun y0 () (_ BitVec 32))

(assert (= x1 (bvadd x0 y0)))

(assert (= x2 #x00000002))

(assert (= x3 (bvadd x1 #x00000001)))

(assert (= path_b (distinct x1 #x00000001)))

(assert (ite path_b (= x4 x2) (= x4 x3)))

(assert (not (bvsle x4 #x00000003)))

(check-sat)

(get-model)

Let us feed the problem in Z3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 12

CBMC

I Takes C/C++ programs as input and a loop unrolling bound k

I Returns an error execution or proves safety upto k unrolling of loops

I Robust tool, can take any input

Let us play with CBMC!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 13

An effective technology

I There are very successful BMC tools, e. g., CBMC

I Not a full verification method, but somewhat better than testing

I Implementations may unroll the program upto depth b and then generate
path constraints for all the unrolled paths and solve the constraints

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 14

Topic 19.2

Concolic Testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 15

Concolic (Concrete+Symbolic) testing

Testing algorithm:
find a test suite that covers most of branches of a program

Concolic testing is one of the testing algorithm, which is aided by formal
methods
I Execute the program both symbolically and concretely

I Use symbolic constraints to guide the search
I Use concrete values to simplify the constraints

Original paper: http://dl.acm.org/citation.cfm?id=1065036

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://dl.acm.org/citation.cfm?id=1065036

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 16

Modeling input vector

In our formalism, havocs model inputs.

For ease of notation in the next algorithm, we assume that

I all the labels are guarded commands with a single assignment(havocs
are allowed) and a conjunctive guard.

I all branches are mutually disjoint

I In the program, there are locations with no outgoing edges.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 17

Concolic Testing

Algorithm 19.2: Concolic testing

Input: P = (V , L, `0, `e ,E)
1 ` := `0 v := randomVector();
2 stack := < {(`0, ,) ∈ E} >; π := <>;
3 while stack .size() 6= 0 do
4 Tr := stack .peek();
5 if Tr 6= ∅ then
6 choose (l , [F , x := exp], `′) ∈ Tr such that v |= F ;
7 π.push(F ∧ x ′ = exp ∧ frame(x));
8 stack.replaceTop(Tr \ {(`, [F , x := exp], `′)});
9 stack.push({(`′, ,) ∈ E});

10 ` := `′; v := v [x 7→ exp(v)] // including the havoc ;

11 else
12 find min. j ≥ 0 s.t. ∀i > j . stack[i] = ∅;
13 stack .resize(j); π.resize(j − 1);
14 v ′ := solve(π, stack[j]);

Exercise 19.1
a.Describe solve formally
b.add data structures to
return test-suite

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Coverity

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

End of Lecture 19

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Bounded Model checking
	Concolic Testing

