Lecture 20: Counterexample guided abstraction refinement (CEGAR)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-11-05
Limitations of symbolic model checking

- Too precise
- Often does not scale!
- Approximations like BMC or concolic testing have severe limitations

Let us bring back abstraction!
Topic 20.1

Abstract model checking
Abstract program

Definition 20.1
Let us consider a finite abstraction D and a program $P = (V, L, \ell_0, \ell_e, E)$. An abstract program $P^\# = \text{ABSTRACT}(P, D)$ is $(V, L, \ell_0, \ell_e, E^\#)$ where $E^\#$ is defined as follows.

If $(\ell, \rho, \ell') \in E$ then $(\ell, \rho^\#, \ell') \in E^\#$, where

$$\rho^\# = \{ \gamma(d) \times \gamma(d') | d' = \text{sp}^\#(d, \rho) \}.$$

We assume D and P allow $\rho^\#$ to be easily representable in a computer.
Properties of abstract programs

Theorem 20.1
\[\forall d \in D \exists d' \in D. \ sp(\gamma(d), \rho^\#) = \gamma(d') \]

In other words, the reachable states of the abstract programs are representable in \(D \).

Theorem 20.2

If \(P^\# \) is safe then \(P \) is safe.

Just analyze the abstract program.
Example: abstract edges

Example 20.1
Consider the following edge and sign abstraction \(D = \{\top, -, 0, +, \bot\} \).

\[
\rho_1 = (x' = 1)
\]

Let us build abstract edge.

\[\begin{align*}
\sp\#(+, \rho_1) &= + \\
\sp\#(0, \rho_1) &= + \\
\sp\#(-, \rho_1) &= + \\
\sp\#(\top, \rho_1) &= + \\
\sp\#(\bot, \rho_1) &= \bot
\end{align*}\]

\[
\rho_1^\# = \{(-, +), (0, +), (+, +), (\top, +)\}
\]

Exercise 20.1
Give abstraction of \(\rho_2 = (x' = x + 1) \)
Example: abstract program

Example 20.2
Consider the following program and sign abstraction $D = \{\top, -, 0, +, \bot\}$.

Program:

\[
\begin{aligned}
&\ell_0 \\
x &:= 1 \\
&\ell_1 \\
x &= x + 2 \\
x &< 0 \\
&\ell_e
\end{aligned}
\]

Abstract program:

\[
\begin{aligned}
\ell_0 &\quad \ell_1 &\quad \ell_e \\
\rho_1^\# &\quad \rho_2^\# &\quad \rho_3^\# \\
&= \{(-, +), (0, +), (+, +), (\top, +)\} \\
&= \{(-, +), (-, 0), (-, +), (0, +), (+, +)\} \\
&= \{(\top, \top)\} \\
&= \{(-, -), (\top, -)\}
\end{aligned}
\]

We have only listed pairs that do not have \bot as second component.
Abstract reachability graph

Since $D = (\sqsubseteq, \top, \bot)$ is finite, symbolic execution of $P^\# = \text{Abstract}(P, D)$ will produce finitely many symbolic states, which are called abstract states.

Definition 20.2

Abstract reachability graph (ARG) $(reach, R)$ is the smallest directed graph such that

- $reach \subseteq L \times D$
- $(\ell_0, \top) \in reach$
- $((\ell, d), (\ell', d')) \in R$ if $\exists (\ell, \rho^\#, \ell') \in E^\#$. $d' = sp(d, \rho^\#)$

Theorem 20.3

If $\forall d. d \neq \text{bot} \land (l_e, d) \not\in reach$ then $P^\#$ is safe.
Example: abstract reachability graph

Abstract program:

Abstract reachability graph:

We are not showing abstract states with \bot.

Exercise 20.2

Draw the rest of ARG with \bot
Model checking

The word model checking originated from the area of modal logic, where finding a model that satisfies a formula is called model checking.

In our situation, we have a logical statement $P^\#$ is not safe

We search for a model of the statement, i.e., a path in the abstract reachability graph that reaches to error location.

If no model found, then $P^\#$ is safe.

Abstract reachability graph may be large.

In contrast, abstract interpretation does not construct large objects.
Abstract model checking

Algorithm 20.1: \textsc{AbstMC}(P^# = (V, L, \ell_0, \ell_e, E^#), D = (\sqsubseteq, \top, \bot))

Output: \textbf{Correct} if \(P^#\) is safe, abstract counterexample otherwise

\begin{itemize}
 \item \texttt{worklist} := \{(\ell_0, \top)\}; \texttt{reach} := \emptyset; \texttt{covered} := \emptyset;
 \item \texttt{parent} : \texttt{reach} \cup \texttt{worklist} \rightarrow \texttt{reach} \cup \texttt{worklist} := \{((\ell_0, \top), (\ell_0, \top))\};
 \item \texttt{path} : \texttt{reach} \cup \texttt{worklist} \rightarrow \text{(sequences of } E^#) := \{((\ell_0, \top), \epsilon)\};
 \item while \texttt{worklist} \neq \emptyset do
 \begin{itemize}
 \item choose \((\ell, d) \in \texttt{worklist}; \texttt{worklist} := \texttt{worklist} \setminus \{(\ell, d)\};
 \item if \(d = \bot\) or \(\exists s \in \texttt{parent}^*(((\ell, d)). s \in \texttt{covered}\) then continue;
 \item if \(\ell = \ell_e\) then \textbf{return} \text{\textsc{Counterexample}}(\text{\texttt{path}}(\ell, d)) ;
 \item \texttt{reach} := \texttt{reach} \cup \{(\ell, d)\};
 \item if \(\exists (\ell, d') \in \texttt{reach} \setminus \text{\texttt{range}}(\texttt{covered}). d \sqsubseteq d'\) then
 \begin{itemize}
 \item \texttt{covered} := \texttt{covered} \cup \{((\ell, d'), (\ell, d))\}
 \end{itemize}
 \item else
 \begin{itemize}
 \item if \(\exists (\ell, d') \in \texttt{reach} \setminus \text{\texttt{range}}(\texttt{covered}). d' \sqsubseteq d\) then
 \begin{itemize}
 \item \texttt{covered} := \texttt{covered} \cup \{((\ell, d), (\ell, d'))\}
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \begin{itemize}
 \item foreach \((\ell, \rho^#, \ell') \in E^#\) do
 \begin{itemize}
 \item \(d' := \text{sp}(d, \rho^#)\); \texttt{worklist} := \texttt{worklist} \cup \{(\ell', d')\};
 \item \texttt{parent}(((\ell', d')) = (\ell, d); \texttt{path}(((\ell', d')) = \texttt{path}((\ell, d)).(\ell, \rho^#, \ell');
 \end{itemize}
 \end{itemize}
 \textbf{return} \textbf{Correct}
\end{itemize}
On the fly abstraction

In AbstMC, we only access $P#$ to compute post operator over d.

This suggests, AbstMC can be implemented in the following two ways.

- **Precompute** $P#$ and run AbstMC as presented.

- **On the fly construction** of $P#$. We construct transitions of $P#$ as we need them.

Exercise 20.3

Discuss benefits of both the approaches
Finite abstractions

The following abstractions are widely used in modelcheckers

- Cartesian predicate abstraction
- Boolean predicate abstraction
Finite abstraction example: Cartesian predicate abstraction

Cartesian predicate abstraction is defined by a set of predicates

\[\text{Preds} = \{ p_1, \ldots, p_n \} \]

\[C = p(\mathbb{Q}^{|V|}) \]

\[D = \bot \cup p(\text{Preds}) \]

\[\bot \subseteq S_1 \subseteq S_2 \text{ if } S_2 \subseteq S_1 \]

\[\alpha(c) = \{ p \in P | c \Rightarrow p \} \]

\[\gamma(S) = \bigwedge S \]

Example 20.3

\[V = \{ x, y \} \]

\[P = \{ x \leq 1, -x - y \leq -1, y \leq 5 \} \]

\[\alpha(\{(0, 0)\}) = \{ x \leq 1, y \leq 5 \} \]

\[\alpha((x - 1)^2 + (y - 3)^2 = 1) = \{ -x - y \leq -1, y \leq 5 \} \]
Representing predicate domain

We represent abstract state as bit vectors.

Example 20.4

Consider \(V = \{x, y\} \) and \(P = \{x \leq 1, -x - y \leq -1, y \leq 5\} \)

Let \([101]\) represent \(x \leq 1 \land y \leq 5\)

Exercise 20.4

- \([100]\) represents ...
- \([000]\) represents ...
- \(Is [100] \sqsubseteq [000]?\)
- \(Is [100] \sqsubseteq [001]?\)
- \(Is [101] \sqsubseteq [001]?\)
- Can we represent false in predicate domain without using special symbol \(\bot\)?
Example: ARG with Cartesian predicate abstraction

\[\text{Preds} = \{ x \geq 0, y \leq 0, x \geq 1 \}. \]

Program:

\begin{align*}
\rho_1 : & x := 0 \\
& y := 0 \\
\rho_2 : & x := x + 1 \\
& y := y + 1 \\
\rho_3 : & \text{skip;}
\end{align*}

Exercise 20.5

Complete the ARG
Spurious counterexample

\texttt{AbstMC}(P\#, D) may fail to prove \(P\# \) correct and return a path \(e_1\# \ldots e_m\# \), which is called \textit{abstract counterexample}.

Let \(e_1 \ldots e_m \) be the corresponding path in \(P \). Now we have two possibilities.

\begin{itemize}
 \item \(e_1 \ldots e_m \) is feasible. Then, we have found a bug
 \item \(e_1 \ldots e_m \) is not feasible. Then, we call \(e_1 \ldots e_m \) as \textit{spurious counterexample}.
\end{itemize}

We need to fix our abstraction such that we do not get the spurious counterexample.
Example: spurious counterexample

Example 20.5

\[(\ell_0, [000])\]

\[\rho_1\]

\[(\ell_1, [110])\]

\[\rho_2\]

\[(\ell_1, [101])\]

\[\rho_3\]

\[(\ell_2, [101])\]

\[\rho_4\]

\[(\ell_2, [100])\]

\[\rho_4\]

\[(\ell_2, [000])\]

\[\rho_5\]

\[(\ell_e, [000])\]

Since we cannot execute \(\rho_1\rho_2\rho_3\rho_4\rho_4\rho_5\), the path is a spurious counterexample.

We check the feasibility of the path using satisfiability of path constraints.
Refinement relation

Definition 20.3

Consider abstractions

\[(C, \subseteq) \xrightarrow{\alpha_1} (D_1, \sqsubseteq_1) \quad \text{and} \quad (C, \subseteq) \xleftarrow{\alpha_1} (D_2, \sqsubseteq_2). \]

\(D_2\) refines \(D_1\) if

\[\forall c \in C. \gamma_1(\alpha_1(c)) \subseteq \gamma_2(\alpha_2(c)) \]

Exercise 20.6

\(\gamma_1 \circ \alpha_2\) is order embedding.
Abstraction refinement

Theorem 20.4

If \textsc{Abstract}(P, D_1) exhibits a spurious counterexample then there is an abstraction \(D_2\) such that \(D_2\) refines \(D_1\) and \textsc{Abstract}(P, D_2) does not exhibit the same counter example.

Proof sketch.

Spurious counterexample:

Refined abstraction:

We say the refinement to \(D_2\) from \(D_1\) ensures progress, i.e., counterexamples are not repeated if ARG is build again with \(D_2\)
Refinement Strategy for predicate abstraction

General refinement strategy
Split abstract states such that the spurious counterexample is disconnected.

In predicate abstraction, we only need to add more predicates. The new abstraction will certainly be refinement.
Example: refinement

Adding predicate $y \leq -1$ will remove the spurious counterexample.

$Preds = \{x \geq 0, y \leq 0, x \geq 1, y \leq 1\}$
CEGAR: CounterExample Guided Abstraction Refinement

Program → Abstract Model → Model checker

- initial abstraction
- refined abstraction
- counterexample
- feasibility check
- refined abstraction
- spurious

Model checker
- no bug found
- property holds
- successful
- bug found
Topic 20.2

Problems
Exercise 20.7

Choose a set of predicates that will prove the following program correct and show the ARG of the program using the predicates.

\[
\begin{align*}
\rho_1 : & \quad x := 0 \\
& \quad y := 1 \\
\rho_2 : & \quad x := x + 2 \\
& \quad y := y + 1 \\
\rho_3 : & \quad \text{skip;}
\end{align*}
\]

\[
\begin{align*}
\rho_4 : & \quad x := x - 2 \\
& \quad y := y - 1 \\
\rho_5 : & \quad x < 0 \land y > 10
\end{align*}
\]
Exercise 20.8

Download CPAchecker: https://cpachecker.sosy-lab.org/

Apply the tool on the following example and report the generated ARG.

```c
int x=0; y=0; z=0; w=0;
while( * ) { 
  if( * ) {
    x = x+1;
    y = y+100;
  }else if ( * ) {
    if (x >= 4) {
      x = x+1;
      y = y+1;
    }
  }else if (y > 10*w && z >= 100*x) {
    y = -y;
  }
  w = w+1;
  z = z+10;
}
if (x >= 4 && y <= 2)
  error();
```
Exercise 20.9

Convert the following LTL formula into a Büchi automaton

\(\square \Diamond a \land \Diamond \square b\)
End of Lecture 20