
cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615: Formal Specification and
Verification of Programs 2019

Lecture 20: Counterexample guided abstraction
refinement
(CEGAR)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-11-05

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 2

Limitations of symbolic model checking

I Too precise

I Often does not scale!

I Approximations like BMC or concolic testing have sever limitations

Let us bring back abstraction!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 3

Topic 20.1

Abstract model checking

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Abstract program

Definition 20.1
Let us consider a finite abstraction D and a program P = (V , L, `0, `e ,E).
An abstract program P# = Abstract(P,D) is (V , L, `0, `e ,E

#) where E#

is defined as follows.

If (`, ρ, `′) ∈ E then (`, ρ#, `′) ∈ E#, where

ρ# = {γ(d)× γ(d ′)|d ′ = sp#(d , ρ)}.

d1 d2

ρ#

ρ

We assume D and P allow ρ# to be easily representable in a computer.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 5

Properties of abstract programs

Theorem 20.1
∀d ∈ D∃d ′ ∈ D. sp(γ(d), ρ#) = γ(d ′)

In other words, the reachable states of the abstract programs are
representable in D.

Theorem 20.2
If P# is safe then P is safe.

Just analyze the abstract program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 6

Example : abstract edges

Example 20.1

Consider the following edge and sign abstraction D = {>,−, 0,+,⊥}.

ρ1 = (x ′ = 1)

Let us build abstract edge.

I sp#(+, ρ1) = +

I sp#(0, ρ1) = +

I sp#(−, ρ1) = +

I sp#(>, ρ1) = +

I sp#(⊥, ρ1) = ⊥

ρ#
1 = {(−,+), (0,+), (+,+), (>,+)}

Exercise 20.1
Give abstraction of ρ2 = (x ′ = x + 1)

No need to record pairs
that start with ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 7

Example: abstract program

Example 20.2

Consider the following program and sign abstraction D = {>,−, 0,+,⊥}.

Program:

`0

`1

`e

x := 1

x < 0

x = x + 2

Abstract
program:

`0

`1

`e

ρ#
1

ρ#
3

ρ#
2

ρ#
1 = {(−,+), (0,+), (+,+), (>,+)}
ρ#

2 = {(−,+), (−, 0), (−,+), (0,+), (+,+)
(>,>)}

ρ#
3 = {(−,−), (>,−)}

We have only listed pairs that do not
have ⊥ as second component.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 8

Abstract reachability graph

Since D = (v,>,⊥) is finite, symbolic execution of P# = Abstract(P,D)
will produce finitely many symbolic states, which are called abstract states.

Definition 20.2
Abstract reachability graph(ARG) (reach,R) is the smallest directed graph
such that

I reach ⊆ L× D

I (`0,>) ∈ reach

I ((`, d), (`′, d ′)) ∈ R if ∃(`, ρ#, `′) ∈ E#. d ′ = sp(d , ρ#)

Theorem 20.3
If ∀d . d 6= bot ∧ (le , d) 6∈ reach then P# is safe.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 9

Example: abstract reachability graph

Abstract program:

`0

`1

`e

ρ#
1

ρ#
3

ρ#
2

ρ#
1 = {(−,+), (0,+), (+,+), (>,+)}
ρ#

2 = {(−,+), (−, 0), (−,+), (0,+), (+,+)
(>,>)}

ρ#
3 = {(−,−), (>,−)}

Abstract reachability graph:

(`0,>)

(`1,+)

ρ#
1

ρ#
2

We are not showing abstract states
with ⊥.

Exercise 20.2
Draw the rest of ARG with ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 10

Model checking

The word model checking originated from the area of modal logic, where
finding a model that satisfies a formula is called model checking.

In our situation, we have a logical statement P# is not safe

We search for a model of the statement, i.e., a path in the abstract
reachability graph that reaches to error location.

If no model found, then P# is safe.

Abstract reachability graph may be large.

In contrast, abstract interpretation does not construct large objects.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 11

Abstract model checking

Algorithm 20.1: AbstMC(P# = (V , L, `0, `e ,E
#), D = (v,>,⊥))

Output: Correct if P# is safe, abstract counterexample otherwise
1 worklist := {(`0,>)}; reach := ∅; covered := ∅;
2 parent : reach ∪ worklist → reach ∪ worklist := {((`0,>), (`0,>))};
3 path : reach ∪ worklist → (sequences of E#) := {((`0,>), ε)};
4 while worklist 6= ∅ do
5 choose (`, d) ∈ worklist; worklist := worklist \ {(`, d)};
6 if d = ⊥ or ∃s ∈ parent∗((`, d)). s ∈ covered then continue;
7 if ` = `e then return Counterexample(path(`, d)) ;
8 reach := reach ∪ {(`, d)};
9 if ∃(`, d ′) ∈ reach − range(covered). d v d ′ then

10 covered := covered ∪ {((`, d ′), (`, d))}
11 else
12 if ∃(`, d ′) ∈ reach − range(covered). d ′ v d then
13 covered := covered ∪ {((`, d), (`, d ′))}

14 foreach (`, ρ#, `′) ∈ E# do
15 d ′ := sp(d , ρ#); worklist := worklist ∪ {(`′, d ′)};
16 parent((`′, d ′)) = (`, d);path((`′, d ′)) = path((`, d)).(`, ρ#, `′);

17 return Correct

P# accessed
only once

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 12

On the fly abstraction

In AbstMC, we only access P# to compute post operator over d .

This suggests, AbstMC can be implemented in the following two ways.

I Precompute P# and run AbstMC as presented.

I On the fly construction of P#. We construct transitions of P# as we
need them

Exercise 20.3
Discuss benefits of both the approaches

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 13

Finite abstractions

The following abstractions are widely used in modelcheckers

I Cartesian predicate abstraction

I Boolean predicate abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 14

Finite abstraction example : Cartesian predicate
abstraction

Cartesian predicate abstraction is defined by a set of predicates
Preds = {p1, . . . , pn}
C = p(Q|V |)
D = ⊥ ∪ p(Preds) // ∅ represents >
⊥ v S1 v S2 if S2 ⊆ S1

α(c) = {p ∈ P|c ⇒ p}
γ(S) =

∧
S

Example 20.3

V = {x, y}
P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}
α({(0, 0)}) = {x ≤ 1, y ≤ 5}
α((x− 1)2 + (y− 3)2 = 1) ={−x− y ≤ −1, y ≤ 5}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 15

Representing predicate domain
We represent abstract state as bit vectors.

Example 20.4

Consider V = {x, y} and P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}

Let [101] represent x ≤ 1 ∧ y ≤ 5

Exercise 20.4

I [100] represents ...

I [000] represent ...

I Is [100] v [000]?

I Is [100] v [001]?

I Is [101] v [001]?

I Can we represent false in predicate domain without using special symbol
⊥?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 16

Example: ARG with Cartesian predicate abstraction

Preds = {x ≥ 0, y ≤ 0, x ≥ 1}.

Program:

`0

`1

`2

`e

ρ1 : x := 0
y := 0

ρ2 : x := x + 1
y := y + 1

ρ3 : skip;

ρ4 : x := x − 1
y := y − 1

ρ5 : x < 0 ∧ y > 0

(`0, [000])

(`1, [110])

ρ#
1

(`1, [101])

ρ#
2

(`1, [101])

ρ#
2

cover

(`2, [101])

ρ#
3

(`2, [100])

ρ#
4

cover

(`2, [000])

ρ#
4

cover

(`e , [000])

ρ#
5

..
ρ#

3

Exercise 20.5
Complete the ARG

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 17

Spurious counterexample

AbstMC(P#, D) may fail to prove P# correct and return a path e#
1 . . . e#

m ,
which is called abstract counterexample.

Let e1 . . . em be the corresponding path in P. Now we have two possibilities.

I e1 . . . em is feasible. Then, we have found a bug

I e1 . . . em is not feasible. Then, we call e1 . . . em as spurious
counterexample.

We need to fix our abstraction such that we do not get the spurious counter
example.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Example : spurious counterexample

Example 20.5

(`0, [000])

(`1, [110])

ρ#
1

(`1, [101])

ρ#
2

(`2, [101])

ρ#
3

(`2, [100])

ρ#
4

(`2, [000])

ρ#
4

(`e , [000])

ρ#
5

Since we cannot execute ρ1ρ2ρ3ρ4ρ4ρ5, the
path is a spurious counterexample.

We check the feasibility of the path using
satisfiability of path constraints.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

Refinement relation

Definition 20.3
Consider abstractions

(C ,⊆) −−−→←−−−
α1

γ1
(D1,v1) and (C ,⊆) −−−→←−−−

α1

γ2
(D2,v2).

D2 refines D1 if
∀c ∈ C . γ1(α1(c)) ⊆ γ2(α2(c))

Exercise 20.6
γ1◦α2 is order embedding.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 20

Abstraction refinement

Theorem 20.4
If Abstract(P,D1) exhibits a spurious counterexample then there is an
abstraction D2 such that D2 refines D1 and Abstract(P,D2) does not
exhibit the same counter example.

Proof sketch.
Spurious counterexample:

d1 d2 d3 d4

e#
1 e#

2 e#
3

Refined abstraction:

d1

d2

d ′
2

d3

d ′
3

d4

e#
1 e#

2

e#
2 e#

3

We say the refinement to D2

from D1 ensures progress, i.e.,
counterexamples are not repeated
if ARG is build again with D2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 21

Refinment Strategy for predicate abstraction

General refinement strategy
Split abstract states such that the spurious counterexample is disconnected.

In predicate abstraction, we only need to add more predicates. The new
abstraction will certainly be refinement.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 22

Example: refinement
Adding predicate y ≤ −1 will remove the spurious counterexample.
Preds = {x ≥ 0, y ≤ 0, x ≥ 1, y ≤ 1}

(`0, [0000])

(`1, [1101])

ρ#
1

(`1, [1011])

ρ#
2

(`2, [1011])

ρ#
3

(`2, [1101])

ρ#
4

(`2, [0101])

ρ#
4

(`e ,⊥)

ρ#
5

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 23

CEGAR: CounterExample Guided Abstraction Refinement

Program Abstract Model
initial

abstraction
Model checker

no bug found

property holds

feasibility check

counterexample

successful

bug found
Refinement

spurious

counterexample

refined abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 24

Topic 20.2

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 25

Abstract reachability graph

Exercise 20.7
Choose a set of predicates that will prove the following program correct and
show the ARG of the program using the predicates.

`0

`1

`2

`e

ρ1 : x := 0
y := 1

ρ2 : x := x + 2
y := y + 1

ρ3 : skip;

ρ4 : x := x − 2
y := y − 1

ρ5 : x < 0 ∧ y > 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 26

CPAchecker

Exercise 20.8
Download CPAchecker: https: // cpachecker. sosy-lab. org/
Apply the tool on the following example and report the generated ARG.
int x=0; y=0; z=0; w=0;

while(*)) {

if(*) {

x = x+1;

y = y+100;

}else if (*) {

if (x >= 4) {

x = x+1;

y = y+1;

}

}else if (y > 10*w && z >= 100*x) {

y = -y;

}

w = w+1;

z = z+10;

}

if (x >= 4 && y <= 2)

error();

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://cpachecker.sosy-lab.org/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 27

LTL to Bübhi

Exercise 20.9
Convert the following LTL formula into a Büchi automatom

�♦a ∧ ♦�b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 28

End of Lecture 20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Abstract model checking
	Problems

