CS615: Formal Specification and Verification of Programs 2019

Lecture 20: Counterexample guided abstraction refinement (CEGAR)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-11-05

Limitations of symbolic model checking

Too precise

- Often does not scale!
- Approximations like BMC or concolic testing have sever limitations
- Let us bring back abstraction!

Topic 20.1

Abstract model checking

Abstract program

Definition 20.1

Let us consider a finite abstraction D and a program $P = (V, L, \ell_0, \ell_e, E)$. An abstract program $P^{\#} = ABSTRACT(P, D)$ is $(V, L, \ell_0, \ell_e, E^{\#})$ where $E^{\#}$ is defined as follows.

If $(\ell, \rho, \ell') \in \mathbf{E}$ then $(\ell, \rho^{\#}, \ell') \in E^{\#}$, where

$$ho^{\#} = \{\gamma(d) imes \gamma(d') | d' = sp^{\#}(d,
ho)\}.$$

We assume D and P allow $\rho^{\#}$ to be easily representable in a computer.

Properties of abstract programs

Theorem 20.1 $\forall d \in D \exists d' \in D. sp(\gamma(d), \rho^{\#}) = \gamma(d')$

In other words, the reachable states of the abstract programs are representable in ${\cal D}.$

Theorem 20.2 If $P^{\#}$ is safe then P is safe.

Just analyze the abstract program.

Example : abstract edges

Example 20.1

Consider the following edge and sign abstraction $D = \{\top, -, 0, +, \bot\}$.

$$\rho_1 = (x' = 1)$$

Let us build abstract edge.

▶
$$sp^{\#}(+, \rho_1) = +$$

▶ $sp^{\#}(0, \rho_1) = +$
▶ $sp^{\#}(-, \rho_1) = +$
▶ $sp^{\#}(\top, \rho_1) = +$
▶ $sp^{\#}(\bot, \rho_1) = \bot$
№ $that start with \bot$
 $p_1^{\#} = \{(-, +), (0, +), (+, +), (\top, +)\}$
Exercise 20.1
Give abstraction of $\rho_2 = (x' = x + 1)$

Example: abstract program

Example 20.2

 Θ

Consider the following program and sign abstraction $D = \{\top, -, 0, +, \bot\}$.

Abstract reachability graph

Since $D = (\sqsubseteq, \top, \bot)$ is finite, symbolic execution of $P^{\#} = ABSTRACT(P, D)$ will produce finitely many symbolic states, which are called abstract states.

Definition 20.2 Abstract reachability graph(ARG) (reach, R) is the smallest directed graph such that

- $\blacktriangleright \ reach \subseteq L \times D$
- ▶ $(\ell_0, \top) \in reach$

000

► $((\ell, d), (\ell', d')) \in R \text{ if } \exists (\ell, \rho^{\#}, \ell') \in E^{\#}. d' = sp(d, \rho^{\#})$

Theorem 20.3 If $\forall d. d \neq bot \land (l_e, d) \notin reach then P^{\#}$ is safe.

Example: abstract reachability graph

Abstract program:

Abstract reachability graph:

We are not showing abstract states with \perp .

9

Exercise 20.2 Draw the rest of ARG with \perp

Model checking

The word model checking originated from the area of modal logic, where finding a model that satisfies a formula is called model checking.

In our situation, we have a logical statement $P^{\#}$ is not safe

We search for a model of the statement, i.e., a path in the abstract reachability graph that reaches to error location.

If no model found, then $P^{\#}$ is safe.

Abstract reachability graph may be large.

In contrast, abstract interpretation does not construct large objects.

Abstract model checking

Algorithm 20.1: ABSTMC($P^{\#} = (V, L, \ell_0, \ell_e, E^{\#}), D = (\sqsubseteq, \top, \bot)$)

Output: CORRECT if $P^{\#}$ is safe, abstract counterexample otherwise worklist := { (ℓ_0, \top) }; reach := \emptyset ; covered := \emptyset ; parent : reach \cup worklist \rightarrow reach \cup worklist := {($(\ell_0, \top), (\ell_0, \top)$)}; path : reach \cup worklist \rightarrow (sequences of $E^{\#}$) := {((ℓ_0, \top), ϵ)}: while worklist $\neq \emptyset$ do choose $(\ell, d) \in worklist$; worklist := worklist \ $\{(\ell, d)\}$; if $d = \bot$ or $\exists s \in parent^*((\ell, d))$. $s \in covered$ then continue; if $\ell = \ell_e$ then return COUNTEREXAMPLE(*path*(ℓ, d)); reach := reach \cup {(ℓ , d)}; if $\exists (\ell, d') \in reach - range(covered)$. $d \sqsubseteq d'$ then covered := covered \cup {((ℓ , d'), (ℓ , d))} else if $\exists (\ell, d') \in reach - range(covered)$. $d' \sqsubseteq d$ then covered := covered $\cup \{((\ell, d), (\ell, d'))\} \int P^{\#}$ accessed only once foreach $(\ell, \rho^{\#}, \ell') \in E^{\#}$ do $d' := sp(d, \rho^{\#});$ worklist := worklist $\cup \{(\ell', d')\};$ $parent((\ell', d')) = (\ell, d); path((\ell', d')) = path((\ell, d)).(\ell, \rho^{\#}, \ell');$

return Correct

©()\$0

On the fly abstraction

In ABSTMC, we only access $P^{\#}$ to compute post operator over d.

This suggests, ${\rm ABSTMC}$ can be implemented in the following two ways.

- Precompute $P^{\#}$ and run ABSTMC as presented.
- On the fly construction of P[#]. We construct transitions of P[#] as we need them

Exercise 20.3 Discuss benefits of both the approaches

Finite abstractions

The following abstractions are widely used in modelcheckers

- Cartesian predicate abstraction
- Boolean predicate abstraction

Finite abstraction example : Cartesian predicate abstraction

Cartesian predicate abstraction is defined by a set of predicates $\begin{array}{l} Preds = \{p_1, \dots, p_n\} \\ C = \mathfrak{p}(\mathbb{Q}^{|V|}) \\ D = \bot \cup \mathfrak{p}(Preds) & // \emptyset \text{ represents } \top \\ \bot \sqsubseteq S_1 \sqsubseteq S_2 \text{ if } S_2 \subseteq S_1 \\ \alpha(c) = \{p \in P | c \Rightarrow p\} \\ \gamma(S) = \Lambda S \end{array}$

Example 20.3 $V = \{x, y\}$ $P = \{x \le 1, -x - y \le -1, y \le 5\}$ $\alpha(\{(0, 0)\}) = \{x \le 1, y \le 5\}$ $\alpha((x - 1)^2 + (y - 3)^2 = 1) = \{-x - y \le -1, y \le 5\}$

Representing predicate domain

We represent abstract state as bit vectors.

Example 20.4

Let [101] represent $x \leq 1 \wedge y \leq 5$

Exercise 20.4

- ▶ [100] represents ...
- ▶ [000] represent ...
- Is [100] ⊑ [000]?
- Is [100] ⊑ [001]?
- Is [101] ⊑ [001]?

Can we represent false in predicate domain without using special symbol <u>1</u>?

Spurious counterexample

ABSTMC($P^{\#}$, D) may fail to prove $P^{\#}$ correct and return a path $e_1^{\#} \dots e_m^{\#}$, which is called abstract counterexample.

Let e₁...e_m be the corresponding path in P. Now we have two possibilities.
e₁...e_m is feasible. Then, we have found a bug
e₁...e_m is not feasible. Then, we call e₁...e_m as spurious

counterexample.

We need to fix our abstraction such that we do not get the spurious counter example.

Example : spurious counterexample

Since we cannot execute $\rho_1\rho_2\rho_3\rho_4\rho_4\rho_5$, the path is a spurious counterexample.

We check the feasibility of the path using satisfiability of path constraints.

Refinement relation

Definition 20.3

Consider abstractions

$$(C,\subseteq) \xleftarrow{\gamma_1}{\alpha_1} (D_1,\sqsubseteq_1) \text{ and } (C,\subseteq) \xleftarrow{\gamma_2}{\alpha_1} (D_2,\sqsubseteq_2).$$

 D_2 refines D_1 if

$$\forall c \in C. \ \gamma_1(\alpha_1(c)) \subseteq \gamma_2(\alpha_2(c))$$

Exercise 20.6

 $\gamma_1 \circ \alpha_2$ is order embedding.

Abstraction refinement

Theorem 20.4

If $ABSTRACT(P, D_1)$ exhibits a spurious counterexample then there is an abstraction D_2 such that D_2 refines D_1 and $ABSTRACT(P, D_2)$ does not exhibit the same counter example.

Proof sketch.

 $\Theta \odot S$

Spurious counterexample:

We say the refinement to D_2 from D_1 ensures progress, i.e., counterexamples are not repeated if ARG is build again with D_2

r20

Refinment Strategy for predicate abstraction

General refinement strategy

Split abstract states such that the spurious counterexample is disconnected.

In predicate abstraction, we only need to add more predicates. The new abstraction will certainly be refinement.

Example: refinement

000

Adding predicate $y \le -1$ will remove the spurious counterexample. $Preds = \{x \ge 0, y \le 0, x \ge 1, y \le 1\}$

ia 22

CEGAR: CounterExample Guided Abstraction Refinement

Topic 20.2

Problems

Abstract reachability graph

Exercise 20.7

Choose a set of predicates that will prove the following program correct and show the ARG of the program using the predicates.

$$\rho_{1}: x := 0$$

$$y := 1$$

$$\rho_{2}: x := x + 2$$

$$y := y + 1$$

$$\rho_{3}: skip;$$

$$\rho_{4}: x := x - 2$$

$$y := y - 1$$

$$\ell_{2}$$

$$\rho_{5}: x < 0 \land y > 10$$

$$\ell_{e}$$

CPAchecker

```
Exercise 20.8
Download CPAchecker: https://cpachecker.sosy-lab.org/
Apply the tool on the following example and report the generated ARG.
int x=0; y=0; z=0; w=0;
while( * )) {
  if( * ) {
      x = x+1:
      v = v + 100;
  }else if ( * ) {
     if (x >= 4) {
       x = x+1;
       y = y+1;
    }
  }else if (y > 10*w && z >= 100*x) {
      y = -y;
  }
  w = w+1:
  z = z+10;
}
if (x \ge 4 \&\& y \le 2)
  error();
         CS615: Formal Specification and Verification of Programs 2019
\Theta
                                                     Instructor: Ashutosh Gupta
                                                                         IITB, India
```

LTL to Bübhi

Exercise 20.9 Convert the following LTL formula into a Büchi automatom

 $\Box \Diamond a \land \Diamond \Box b$

End of Lecture 20

