
cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615 2019

Lecture 21: Proof generation

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-11-05

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 2

Evidence of unsat

If a formula is sat then the solver produces a model as an evidence of
satisfiability.

Otherwise, it produces only UNSAT.

Solvers should also produce a proof for unsatisfiability.

Learned clauses will help us constructing the proofs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 3

Issues in generating proofs in SAT solvers or any solver

Proof format vs. checking

I Detailed proofs require non-trivial work from solvers, causing overhead.

I Missing details in proofs imply expensive proof checkers.

Proof minimization

I Problems of moderate size may have very large proofs

I Proofs often have redundancies

I It is wise to minimize proofs before dumping it out

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 4

Proof formats for SAT solvers

SAT solvers typically return two kinds of proofs

I Clausal proofs, i.e., list of learned clauses (low overhead)

I Resolution proofs (detailed)

Marijn J.H. Heule and Armin Biere. Proofs for Satisfiability Problems

https://www.cs.utexas.edu/~marijn/publications/APPA.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://www.cs.utexas.edu/~marijn/publications/APPA.pdf

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 5

Topic 21.1

Clausal proof generation from SAT solver

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 6

Learned clause proofs

The list of learned clause can be considered proofs.

Example 21.1

Input CNF

p cnf 3 6

-2 3 0

1 3 0

-1 2 0

-1 -2 0

1 -2 0

2 -3 0

Learned clauses

-2 0

3 0

0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 7

Learned clause proofs with deletions

A learned clause may be deleted over the run. A new entry is added with
prefix d . The format is called DRAT.

Example 21.2
Input CNF

p cnf 5 8

-1 -2 -3 0

1 4 0

1 5 0

2 4 0

2 5 0

3 4 0

3 5 0

-4 -5 0

DRAT clausal proof

6 1 0

6 2 0

6 3 0

-6 4 0

-6 5 0

d 1 4 0

d 2 4 0

d 3 4 0

d 1 5 0

d 2 5 0

d 3 5 0

6 0

0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 8

Proof checking

A proof is a proof only if an independent checker can check it efficiently.

Let L1,, Lm be learned clauses for CNF formula F such that Lm = ∅.

To check a learned clauses proof, we need to check the following for each Li

F ∧ L1 ∧ · · · ∧ Li−1 ∧ ¬Li︸︷︷︸
conjunction of literals

results in contradiction after unit propagation.(why?)

Exercise 21.1
Explain why?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 9

Clausal Proof checking algorithm

Algorithm 21.1: ProofChecking
Input: CNF F , L1, . . . , Ln

1 marked := λx .⊥;
2 marked(∅) := >;
3 while i is partial or n...1 do
4 if marked(Li) then
5 m := UnitPropagation(∅,F ∧ L1 ∧ · · · ∧ Li−1 ∧ ¬Li);
6 if m 6|= F then
7 for each clause L that participate in the conflict marked(L) := >
8 else
9 throw “invalid proof”

10 return “valid proof”

Commentary: UnitPropagation takes initial partial model as input, which is in the above case is empty. It returns a model that is
enforced by unit propagation. If the model does not satisfy input formula, it is unsatisfiable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 10

Clausal proof checking is expensive

Sometimes more expensive than solving

I Gets exacerbated due to clause deletions in SAT solvers
I deleted clauses are saved in the proof
I too many deleted clauses

I No reuse of propagations

I No effcient representation of many simplifications,
I e.g., Gaussian elimination, etc.
I cannot be resolved without introducing complex proof format

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 11

Topic 21.2

Resolution proof generation from SAT solver

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 12

Resolution Proofs

A proof is written in a given proof system. Here, we choose resolution.

A resolution proof rule is

p ∨ C ¬p ∨ D

C ∨ D
.

Variable p is called the pivot of the inference.

Example 21.3

Suppose F = (p ∨ q) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r

p ∨ q ¬p ∨ q

q ¬q ∨ r

r ¬r
⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 13

Reading proofs from implication graphs

I For each learned clause we assign a resolution proof that proves that the
learned clause is implied by the clauses in the solver so far.

Le us demonstrate the process using an example.

Example 21.4
¬p6@1

¬p5@1

c8

p1@3

p3@3

c2 c2

p2@3

c1

p4@3

c3

conflict

c4

c4

Input clauses:
c8 = (p6 ∨ ¬p5) c2 = (¬p1 ∨ p3 ∨ p5)

c1 = (¬p1 ∨ p2) c3 = (¬p2 ∨ p4) c4 = (¬p3 ∨ ¬p4)

Conflict clause : p6 ∨ ¬p1

Conflict as a resolution proof:

¬p1 ∨ p3 ∨ p5

p6 ∨ ¬p5 ¬p6

¬p5

¬p1 ∨ p3 p1

p3

¬p3 ∨ ¬p4

¬p2 ∨ p4

¬p1 ∨ p2 p1

p2

p4

¬p3

⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 14

Resolution proofs for conflict clauses

Example 21.5 (contd.)

¬p1 ∨ p3 ∨ p5

p6 ∨ ¬p5 6¬p6

p6∨¬p5

p6∨¬p1 ∨ p3 6p1

p6 ∨ ¬p1∨p3

¬p3 ∨ ¬p4

¬p2 ∨ p4

¬p1 ∨ p2 6p1

¬p1∨p2

¬p1∨p4

¬p1∨¬p3

p6 ∨ ¬p1∨⊥
The above is a resolution proof of the conflict clause.

One more issue:
There may be a leaf of the above proof that is a conflict clause in itself.

I In the case, there must be a resolution proof for the conflict clause.

I We “stitch” that proof on top of the above proof .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 15

CDCL with proof generation

Algorithm 21.2: CDCL
Input: CNF F

1 m := ∅; dl := 0; dstack := λx .0; proofs = λC .C ;
2 UnitPropagation(m,F);
3 do
4 // backtracking
5 while m 6|= F do
6 (C , dl , proof) := AnalyzeConflict(m,F , proofs);
7 proofs(C) := proof ;
8 if C = ∅ then return unsat(proof);
9 m.resize(dstack(dl)); F := F ∪ {C}; m := UnitPropagation(m,F);

10 // Boolean decision
11 if m is partial then
12 dstack(dl) := m.size();
13 dl := dl + 1; Decide(m,F); UnitPropagation(m,F) ;

14 while m is partial or m 6|= F ;
15 return sat

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 16

Resolution proof format in SAT solvers

SAT solvers can dump resolution proofs in a standard format.

Example 21.6

Input CNF

p cnf 3 6

-2 3 0

1 3 0

-1 2 0

-1 -2 0

1 -2 0

2 -3 0

Learned clauses

-2 0

3 0

0

Resolution proof

1 -2 3 0 0

2 1 3 0 0

3 -1 2 0 0

4 -1 -2 0 0

5 1 -2 0 0

6 2 -3 0 0

7 -2 0 4 5 0

8 3 0 1 2 3 0

9 0 6 7 8 0
`1 ∨ C1 . . . `k ∨ Ck ¬`1 ∨ · · · ∨ ¬`k ∨ D

C1 ∨ · · · ∨ Ck ∨ D

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 17

Topic 21.3

Proof minimization

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 18

Recall: Resolution Proofs

A proof is written in a given proof system. Here, we may choose resolution
for propositional logic.

A resolution proof rule is

p ∨ C ¬p ∨ D

C ∨ D
.

Variable p is called the pivot of the inference.

Example 21.7

Suppose F = (p ∨ q) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r

p ∨ q ¬p ∨ q

q ¬q ∨ r

r ¬r
⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 19

Proof minimization

I There are several kinds of redundancies that may occur in proofs.

I We may apply several passes to minimize for each kind

I A minimization pass should preferably be a linear-time algorithm

Here we present two such cases.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 20

Proofs as directed acyclic graphs

A proof is a directed acyclic graph, not a tree.

Example 21.8

⊥

c ¬c

¬b ∨ c b ∨ c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

Leaves are input clauses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 21

Minimization: stronger clauses

If a node in a proof is weaker than another node, we may replace the node.

Example 21.9

⊥

c ¬c

¬b ∨ c b ∨ c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

The red edge can be replaced by the dotted edge.

Exercise 21.2
When can we not apply the transformation?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 22

Effect of strengthening : decedents become stronger

Due to stronger antecedents, the decedents can also become stronger.

Example 21.10

⊥

c ¬c

¬b ∨ c b ∨ c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

 ⊥

c ¬c

¬b ∨ c c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 23

Effect of strengthening : resolutions eliminated

As nodes get stronger many resolutions become useless.

Proofs can be short circuited.

Example 21.11

⊥

c ¬c

¬b ∨ c c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 24

Second minimization : redundant resolutions
The process of resolution removes a literal in each step until none is left.
In a step, the pivot literal is removed and others may be introduced.

Definition 21.1
if a pivot is repeated in a derivation path to ⊥, then the earlier resolution is
redundant in the path.

Example 21.12

Consider the following resolution proof:

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

The resolution at b is redundant in both the paths to ⊥.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 25

Removing redundant resolution
By rewiring the proof, we may remove the redundant node v .

One of the parent of v will be wired to the children of v .

Example 21.13

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

After rewiring we may need to update clauses in some proof nodes.

Exercise 21.3
Which parent to choose?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 26

Detecting redundant resolution - expansion set
Definition 21.2
For a proof node v , expansion set ρ(v) is the set of literals such that
` ∈ ρ(v) iff ` will be removed in all paths to ⊥. ρ is defined as follows.

ρ(v) =

∅ v = ⊥⋂
v ′∈children(v)

ρ(v ′) ∪ {rlit(v , v ′)} − {¬rlit(v , v ′)} otherwise

where rlit(v , v ′) is the literal involved on the edge (v , v ′).

Exercise 21.4
Calculate ρ(v) for each node:

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 27

Detecting redundant resolution (contd.)

Theorem 21.1
If pivot(v) or ¬pivot(v) ∈ ρ(v) then v is redundant.

Exercise 21.5
a. What is the complexity of computing ρ?
b. Prove ρ(v) ⊇ literals in v
c. Given the above observations suggest an heuristic optimization.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 28

Topic 21.4

Proofs from theory solvers

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 29

Theory solvers

Each theory needs to have its own proof rules and instrumentation of the
employed decision procedure to obtain proofs.

Here, we will look at two examples

I Theory of linear rational arithmetic (TLRA)

I Theory of equality with uninterpreted functions(TEUF)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 30

Proof generation in TLRA

In the theory of LRA, atoms are linear constraints over rational variables.

The following is the only proof rule for the theory.

a1x ≤ b1 a1x ≤ b1

(λ1a1 + λ2a2)x ≤ (λ1b1 + λ2b2)
λ1, λ2 ≥ 0

Example 21.14

Consider: 3x1 ≤ −6 ∧ x1 − 3x2 ≤ 1 ∧ x1 + x2 ≤ 2

3x1 ≤ −6

x1 − 3x2 ≤ 1 x1 + x2 ≤ 2

4x1 ≤ 7
λ1 = 1, λ2 = 3

0 ≤ −1
λ1 = 4/3, λ2 = 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 31

LRA solver

There are many decision procedures for solving LRA.

We will present proof generation via Fourier-Motzkin algorithm for solving
LRA.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 32

Proof generation from Fourier-Motzkin

Observation:

I Fourier-Motzkin proceeds by replacing inequalities by other inequalities

I incoming inequalities are positive linear combination of old inequalities

I We may instrument Fourier-Motzkin to keep the record and produce
proof if input is found to be unsat

Example 21.15

In the previous example,

−x1 + x2 + 2x3 ≤ 0 x1 − x3 ≤ 0

x2 + x3 ≤ 0

−x1 + x2 + 2x3 ≤ 0 x1 − x2 ≤ 0

x3 ≤ 0 −x3 ≤ −1
0 ≤ −1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 33

End of Lecture 21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Clausal proof generation from SAT solver
	Resolution proof generation from SAT solver
	Proof minimization
	Proofs from theory solvers

