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Evidence of unsat

If a formula is sat then the solver produces a model as an evidence of
satisfiability.

Otherwise, it produces only UNSAT.

Solvers should also produce a proof for unsatisfiability.

Learned clauses will help us constructing the proofs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615 2019 Instructor: Ashutosh Gupta IITB, India 3

Issues in generating proofs in SAT solvers or any solver

Proof format vs. checking

I Detailed proofs require non-trivial work from solvers, causing overhead.

I Missing details in proofs imply expensive proof checkers.

Proof minimization

I Problems of moderate size may have very large proofs

I Proofs often have redundancies

I It is wise to minimize proofs before dumping it out
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Proof formats for SAT solvers

SAT solvers typically return two kinds of proofs

I Clausal proofs, i.e., list of learned clauses (low overhead)

I Resolution proofs (detailed)

Marijn J.H. Heule and Armin Biere. Proofs for Satisfiability Problems

https://www.cs.utexas.edu/~marijn/publications/APPA.pdf
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Topic 21.1

Clausal proof generation from SAT solver
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Learned clause proofs

The list of learned clause can be considered proofs.

Example 21.1

Input CNF

p cnf 3 6

-2 3 0

1 3 0

-1 2 0

-1 -2 0

1 -2 0

2 -3 0

Learned clauses

-2 0

3 0

0
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Learned clause proofs with deletions

A learned clause may be deleted over the run. A new entry is added with
prefix d . The format is called DRAT.

Example 21.2
Input CNF

p cnf 5 8

-1 -2 -3 0

1 4 0

1 5 0

2 4 0

2 5 0

3 4 0

3 5 0

-4 -5 0

DRAT clausal proof

6 1 0

6 2 0

6 3 0

-6 4 0

-6 5 0

d 1 4 0

d 2 4 0

d 3 4 0

d 1 5 0

d 2 5 0

d 3 5 0

6 0

0
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Proof checking

A proof is a proof only if an independent checker can check it efficiently.

Let L1, ...., Lm be learned clauses for CNF formula F such that Lm = ∅.

To check a learned clauses proof, we need to check the following for each Li

F ∧ L1 ∧ · · · ∧ Li−1 ∧ ¬Li︸︷︷︸
conjunction of literals

results in contradiction after unit propagation.(why?)

Exercise 21.1
Explain why?
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Clausal Proof checking algorithm

Algorithm 21.1: ProofChecking
Input: CNF F , L1, . . . , Ln

1 marked := λx .⊥;
2 marked(∅) := >;
3 while i is partial or n...1 do
4 if marked(Li ) then
5 m := UnitPropagation(∅,F ∧ L1 ∧ · · · ∧ Li−1 ∧ ¬Li );
6 if m 6|= F then
7 for each clause L that participate in the conflict marked(L) := >
8 else
9 throw “invalid proof”

10 return “valid proof”

Commentary: UnitPropagation takes initial partial model as input, which is in the above case is empty. It returns a model that is
enforced by unit propagation. If the model does not satisfy input formula, it is unsatisfiable.
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Clausal proof checking is expensive

Sometimes more expensive than solving

I Gets exacerbated due to clause deletions in SAT solvers
I deleted clauses are saved in the proof
I too many deleted clauses

I No reuse of propagations

I No effcient representation of many simplifications,
I e.g., Gaussian elimination, etc.
I cannot be resolved without introducing complex proof format
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Topic 21.2

Resolution proof generation from SAT solver
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Resolution Proofs

A proof is written in a given proof system. Here, we choose resolution.

A resolution proof rule is

p ∨ C ¬p ∨ D

C ∨ D
.

Variable p is called the pivot of the inference.

Example 21.3

Suppose F = (p ∨ q) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r

p ∨ q ¬p ∨ q

q ¬q ∨ r

r ¬r
⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Reading proofs from implication graphs

I For each learned clause we assign a resolution proof that proves that the
learned clause is implied by the clauses in the solver so far.

Le us demonstrate the process using an example.

Example 21.4
¬p6@1

¬p5@1

c8

p1@3

p3@3

c2 c2

p2@3

c1

p4@3

c3

conflict

c4

c4

Input clauses:
c8 = (p6 ∨ ¬p5) c2 = (¬p1 ∨ p3 ∨ p5)

c1 = (¬p1 ∨ p2) c3 = (¬p2 ∨ p4) c4 = (¬p3 ∨ ¬p4)

Conflict clause : p6 ∨ ¬p1

Conflict as a resolution proof:

¬p1 ∨ p3 ∨ p5

p6 ∨ ¬p5 ¬p6

¬p5

¬p1 ∨ p3 p1

p3

¬p3 ∨ ¬p4

¬p2 ∨ p4

¬p1 ∨ p2 p1

p2

p4

¬p3

⊥
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Resolution proofs for conflict clauses

Example 21.5 (contd.)

¬p1 ∨ p3 ∨ p5

p6 ∨ ¬p5 6¬p6

p6∨¬p5

p6∨¬p1 ∨ p3 6p1

p6 ∨ ¬p1∨p3

¬p3 ∨ ¬p4

¬p2 ∨ p4

¬p1 ∨ p2 6p1

¬p1∨p2

¬p1∨p4

¬p1∨¬p3

p6 ∨ ¬p1∨⊥
The above is a resolution proof of the conflict clause.

One more issue:
There may be a leaf of the above proof that is a conflict clause in itself.

I In the case, there must be a resolution proof for the conflict clause.

I We “stitch” that proof on top of the above proof .
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CDCL with proof generation

Algorithm 21.2: CDCL
Input: CNF F

1 m := ∅; dl := 0; dstack := λx .0; proofs = λC .C ;
2 UnitPropagation(m,F );
3 do
4 // backtracking
5 while m 6|= F do
6 (C , dl , proof ) := AnalyzeConflict(m,F , proofs);
7 proofs(C) := proof ;
8 if C = ∅ then return unsat(proof);
9 m.resize(dstack(dl)); F := F ∪ {C}; m := UnitPropagation(m,F );

10 // Boolean decision
11 if m is partial then
12 dstack(dl) := m.size();
13 dl := dl + 1; Decide(m,F ); UnitPropagation(m,F ) ;

14 while m is partial or m 6|= F ;
15 return sat
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Resolution proof format in SAT solvers

SAT solvers can dump resolution proofs in a standard format.

Example 21.6

Input CNF

p cnf 3 6

-2 3 0

1 3 0

-1 2 0

-1 -2 0

1 -2 0

2 -3 0

Learned clauses

-2 0

3 0

0

Resolution proof

1 -2 3 0 0

2 1 3 0 0

3 -1 2 0 0

4 -1 -2 0 0

5 1 -2 0 0

6 2 -3 0 0

7 -2 0 4 5 0

8 3 0 1 2 3 0

9 0 6 7 8 0
`1 ∨ C1 . . . `k ∨ Ck ¬`1 ∨ · · · ∨ ¬`k ∨ D

C1 ∨ · · · ∨ Ck ∨ D
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Topic 21.3

Proof minimization
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Recall: Resolution Proofs

A proof is written in a given proof system. Here, we may choose resolution
for propositional logic.

A resolution proof rule is

p ∨ C ¬p ∨ D

C ∨ D
.

Variable p is called the pivot of the inference.

Example 21.7

Suppose F = (p ∨ q) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r

p ∨ q ¬p ∨ q

q ¬q ∨ r

r ¬r
⊥
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Proof minimization

I There are several kinds of redundancies that may occur in proofs.

I We may apply several passes to minimize for each kind

I A minimization pass should preferably be a linear-time algorithm

Here we present two such cases.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Proofs as directed acyclic graphs

A proof is a directed acyclic graph, not a tree.

Example 21.8

⊥

c ¬c

¬b ∨ c b ∨ c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

Leaves are input clauses.
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Minimization: stronger clauses

If a node in a proof is weaker than another node, we may replace the node.

Example 21.9

⊥

c ¬c

¬b ∨ c b ∨ c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

The red edge can be replaced by the dotted edge.

Exercise 21.2
When can we not apply the transformation?
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Effect of strengthening : decedents become stronger

Due to stronger antecedents, the decedents can also become stronger.

Example 21.10

⊥

c ¬c

¬b ∨ c b ∨ c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b

 ⊥

c ¬c

¬b ∨ c c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b
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Effect of strengthening : resolutions eliminated

As nodes get stronger many resolutions become useless.

Proofs can be short circuited.

Example 21.11

⊥

c ¬c

¬b ∨ c c

a ∨ c

¬b b ∨ ¬c

a ∨ ¬b¬a

¬a ∨ ¬b¬a ∨ b
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Second minimization : redundant resolutions
The process of resolution removes a literal in each step until none is left.
In a step, the pivot literal is removed and others may be introduced.

Definition 21.1
if a pivot is repeated in a derivation path to ⊥, then the earlier resolution is
redundant in the path.

Example 21.12

Consider the following resolution proof:

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

The resolution at b is redundant in both the paths to ⊥.
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Removing redundant resolution
By rewiring the proof, we may remove the redundant node v .

One of the parent of v will be wired to the children of v .

Example 21.13

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

After rewiring we may need to update clauses in some proof nodes.

Exercise 21.3
Which parent to choose?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Detecting redundant resolution - expansion set
Definition 21.2
For a proof node v , expansion set ρ(v) is the set of literals such that
` ∈ ρ(v) iff ` will be removed in all paths to ⊥. ρ is defined as follows.

ρ(v) =


∅ v = ⊥⋂
v ′∈children(v)

ρ(v ′) ∪ {rlit(v , v ′)} − {¬rlit(v , v ′)} otherwise

where rlit(v , v ′) is the literal involved on the edge (v , v ′).

Exercise 21.4
Calculate ρ(v) for each node:

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b
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Detecting redundant resolution (contd.)

Theorem 21.1
If pivot(v) or ¬pivot(v) ∈ ρ(v) then v is redundant.

Exercise 21.5
a. What is the complexity of computing ρ?
b. Prove ρ(v) ⊇ literals in v
c. Given the above observations suggest an heuristic optimization.
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Topic 21.4

Proofs from theory solvers
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Theory solvers

Each theory needs to have its own proof rules and instrumentation of the
employed decision procedure to obtain proofs.

Here, we will look at two examples

I Theory of linear rational arithmetic (TLRA)

I Theory of equality with uninterpreted functions(TEUF )
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Proof generation in TLRA

In the theory of LRA, atoms are linear constraints over rational variables.

The following is the only proof rule for the theory.

a1x ≤ b1 a1x ≤ b1

(λ1a1 + λ2a2)x ≤ (λ1b1 + λ2b2)
λ1, λ2 ≥ 0

Example 21.14

Consider: 3x1 ≤ −6 ∧ x1 − 3x2 ≤ 1 ∧ x1 + x2 ≤ 2

3x1 ≤ −6

x1 − 3x2 ≤ 1 x1 + x2 ≤ 2

4x1 ≤ 7
λ1 = 1, λ2 = 3

0 ≤ −1
λ1 = 4/3, λ2 = 1
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LRA solver

There are many decision procedures for solving LRA.

We will present proof generation via Fourier-Motzkin algorithm for solving
LRA.
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Proof generation from Fourier-Motzkin

Observation:

I Fourier-Motzkin proceeds by replacing inequalities by other inequalities

I incoming inequalities are positive linear combination of old inequalities

I We may instrument Fourier-Motzkin to keep the record and produce
proof if input is found to be unsat

Example 21.15

In the previous example,

−x1 + x2 + 2x3 ≤ 0 x1 − x3 ≤ 0

x2 + x3 ≤ 0

−x1 + x2 + 2x3 ≤ 0 x1 − x2 ≤ 0

x3 ≤ 0 −x3 ≤ −1
0 ≤ −1
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End of Lecture 21
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