
cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 1

SAT@Mandi 2019

Lecture 4: CDCL - optimizations

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-03-29

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 2

Review of CDCL

I CNF input

I Decision, propagation, conflict, and backtracking

I Clause learning from conflict

I Clause minimization : first UIP strategy

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 3

Other heuristics

More heuristics that may improve the performance of SAT solvers

I Lazy data structures
I 2-watched literals
I pure literals

I Other optimizations
I variable ordering
I restarts
I learned clause deletion
I cache aware implementation

I pre-processing

Commentary: Clause learning is an algorithmic change. The above optimizations are clever data structures and implementations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 4

Topic 4.1

Lazy data structures

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 5

Data stracture to keep the formulas

I Variables are contiguous numbers
I Variable numbers are used as index to the data structures
I Positive integer is the positive literal
I Negative integer is the negated literal

I Current assignment is a list of literals

I Occurrence map OccurList : literals → clauses
I Stored as array of arrays
I Binary and ternary clauses stored exclusively, since they become unit

clauses too often

Exercise 4.1
What is the maximum number of variables allowed in the design?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 6

Detetecting Unit clauses

Näive procedure:

I For each unassigned clause count unassigned literals

I If there is exactly one unassigned literal, apply unit clause propagation

Observation:
To decide if a clause is ready for unit propagation,

we need to count only 0, 1, and many, i.e.,
we need to look at only two literals that are not false.

Let us use the insight to optimize the unit clause propagation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 7

2-watched literals for detecting unit clauses

For each clause we choose two literals and we call them watched literals.

In a clause,

I if watched literals are non-false, the clause is not a unit clause

I if any of the two becomes false, we look for another two non-false literals

I If we can not find another two, the clause is a unit clause

Exercise 4.2
Why this scheme may reduce the effort in searching for the unit clauses?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 8

Example: 2-watched literals

Example 4.1

Consider clause p1 ∨ p2 ∨ ¬p3 ∨ ¬p4 in a formula among other variables and
clauses. Let us suppose initially we watch p1 and p2 in the clause.

∗ , watched literals.
, no work needed!

Initially: m = {}
...
Assign p1 = 0: m = {. . . , p1 7→ 0}
Assign p2 = 1: m = {. . . , p1 7→ 0, p2 7→ 1}
Backtrack to p1: m = {. . . }
Assign p4 = 1: m = {. . . , p4 7→ 1}

p∗1 ∨ p∗2 ∨ ¬p3 ∨ ¬p4
...
p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4 (work)

p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4

p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4

p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4

The benefit: often no work to be done!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 9

Data structure for 2-watched literals

I A map from literals to a list of clauses where the literal is watched

I If a literal becomes false, one of the following happens in a clause where
it is watched
I the clause has become a unit clause
I conflict has occurred
I the clause is moved to the other literals in the clause watch list

I No other operation in the assignment triggers an action on watched
data structure

Exercise 4.3
Is this idea extendable for counting 0, 1, 2, and many?

Only in the last case, the
data structure changes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 10

Exercise: execute 2-watched literals

Exercise 4.4
Let the following be a sequence of partial models occurring in a run of CDCL

1. p1

2. p1, p2

3. p1, p2,¬p3, p5

4. p1

5. p1,¬p3

6. p1,¬p3,¬p5

7. p1,¬p3,¬p5, p4

8. p1

9. p1,¬p4

10. p1,¬p4,¬p2

Now consider clause ¬p1 ∨ p3 ∨ p4 ∨ p5 with initial watched literals ¬p1 and
p3. Give the watched literals in the clause after each of the above partial
models.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 11

Detecting pure literals

Definition 4.1
A literal ` is called pure in F if ¯̀ does not occur in F .

Benefit: ` may be assigned 1 immediately.

As CDCL proceeds, more and more literals may become pure literals.(why?)

We may assign them similar to unit clause propagation.

However, this optimization is at odds with 2-watched literal optimization.

I In each step, 2-watched literal optimization only visits those clauses that
have literals that are just assigned and watched

I Adding such data structure will defeat the benefit of 2-watched literal.

Often not implemented

Commentary: We saw two optimizations that are at odds with each other. Often newly proposed optimizations find it hard to work
with existing ones in the tools.
Anecdotal fact: Some Quantified Boolean Formula(QBF) solvers do implement pure literal removal. Similar to 2-watched literal idea,
they watch clauses to ensure to check if some literal is still active.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 12

Topic 4.2

Other design choices

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 13

Decision ordering

After each backtrack, we may choose a different order of assignment.

There are many proposed strategies for the decision order.

Desired property: allow different order after backtracking and less overhead

The following are two widely used strategies:

1. Select a literal with maximum occurrences in unassigned clauses

2. Variable state independent decaying sum

Exercise 4.5
What is the policy in Z3? Choose a solver and find the policy in the solver?

Very popular

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 14

Variable state independent decaying sum(VSIDS)

Each literal has a score. The highest scored unassigned literal is the next
decision, tie is broken randomly

I Initial score is the number of occurrences of the literals

I Score of a literal is incremented whenever a learned clause contains it

I In regular intervals, divide the scores by a constant

VSIDS is almost deterministic. Some solvers occasionally make random
decisions to get out of potential local trap.

Exercise 4.6
Characterize the scheme? Why may this scheme be effective?

decay

Commentary: Variable state independent decaying sum gives greater weight to the occurrence in the later learned clauses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 15

Restart

SAT solvers are likely to get stuck in a local search space.

Solution: restart CDCL with a different variable ordering

I Keep learned clauses across restarts

I Slowly increase the interval of restarts such that tool becomes a
complete solver (various strategies in the literature.)

Exercise 4.7
Suggest a design of a parallel sat solver.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 16

Learned clause deletion

CDCL may learn a lot of clauses.

The solvers time to time delete some learned clauses.

The solver remains sound with deletions. However, the completeness may be
compromised.

For completeness, reduce deletion of clauses over time.

Exercise 4.8
After learning how many clauses, we should start deleting?
(estimate via common sense; Imaging yourself in an interview!!!)

https://arxiv.org/pdf/1402.1956.pdf Gluecose http://www.ijcai.org/Proceedings/09/Papers/074.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://arxiv.org/pdf/1402.1956.pdf
http://www.ijcai.org/Proceedings/09/Papers/074.pdf

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 17

Deletion strategy

A solver may adopt a combination of the following choices.

Which clauses to delete?

I Delete long clauses with higher probability

I Never delete binary clauses

I Never delete active clauses, i.e., are participating in unit propagation

When to delete?

I At restart

I After crossing a threshold of number of the learned clauses; clauses
involved in unit propagation can not be deleted

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 18

Cache aware CDCL

SAT solvers are memory intensive.

The implementation should try to make localized accesses.

I Clause headers and upto four literals are stored together

I Pre allocate clauses in bulk to avoid system overhead

I Clauses should be aligned with cache line

I Use only 2 bits to store state (true, false, and unassigned)

http://www.easychair.org/publications/download/Towards_Improving_the_Resource_Usage_of_SAT-solvers

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.easychair.org/publications/download/Towards_Improving_the_Resource_Usage_of_SAT-solvers

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 19

SAT solving: algorithm, science, or art

Algorithm:
We can not predict the impact of the optimizations based on the theory. The
current theoretical understanding is limited.

Science:
We need to run experiments to measure the performance.

Art:
Only SAT solving elders can tell you what strategy of solving is going to work
on a new instance of SAT.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 20

Topic 4.3

Pre(in)-processing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 21

Pre(in)-processing

Simplify input before CDCL

I Eliminate tautologies/Unit clauses/Pure literal elimination

I Subsumption/Self-subsuming resolution

I Blocked clause elimination

I Literal equivalence

I Bounded variable elimination/addition

I Failed literal probing

I Stamping

I

https://cs.nyu.edu/~barrett/summerschool/soos.pdf

Source of Lingeling (http://fmv.jku.at/lingeling/)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://cs.nyu.edu/~barrett/summerschool/soos.pdf
http://fmv.jku.at/lingeling/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 22

Obvious eliminations

I Eliminate tautologies
I Remove clauses like p1 ∨ ¬p1 ∨

I Assign unit clauses
I Unit propagation at 0th decision level.

I Pure literal elimination
I Remove all the clauses that contain the literal

Exercise 4.9
a. What is the cost of eliminating tautologies?
b. What is the cost of pure literal elimination?

Commentary: Sorted clause make tautology detection efficient. Pre-computing of occurrence while parsing helps identifying pure literals.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 23

Subsumption

Remove clause C ′ if C ⊂ C ′ is present.

I Use backward subsumption: for a C search for weaker clauses

I Only search using short C

I Iterate over the occurrence list of the literal in C that has the smallest
occur size.

I Containment check is sped up using bloom filter.

Example 4.2

p ∨ q ∨ r is a redundant clause if p ∨ q is present.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 24

Subsumption algorithm

The fingerprint used in Lingeling for Bloom filter.

fingerPrint(C) = |`∈C (1 << (atom(`)&31))

atom(`) returns the atom in literal `.

Algorithm 4.1: Subsumption(F)

1 for C ∈ F such that |C | < shortLimit do
2 sigC := fingerPrint(C);
3 ` := literal in C with smallest |OccurList(`)|;
4 for C ′ ∈ OccurList(`) such that C ′ 6= C do
5 if sigC ?? fingerPrint(C ′) then
6 if C ⊂ C ′ then
7 F := (F − {C ′});

Exercise 4.10
Complete the missing operator ’??’.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 25

Self-subsumption (Strengthening)

Replace clause C ′ ∨ ` by C ′ if for some C ⊂ C ′, C ∨ ¬` is present.

Example 4.3

p ∨ q ∨ r ∨ ¬s should be replaced by p ∨ q ∨ r if r ∨ s is present.

Algorithm 4.2: SelfSubsumption(F)

1 for C ∈ F such that |C | < shortLimit do
2 sigC := fingerPrint(C);
3 ` := literal in C with smallest |OccurList(`) ∪ OccurList(¬`)|;
4 for C ′ ∈ OccurList(`) ∪ OccurList(¬`) such that C ′ 6= C do
5 if sigC ?? fingerPrint(C ′) then
6 if D ′ ∨ ¬`′ = C ′ and D ∨ `′ = C and D ⊂ D ′ then
7 F := (F − {C ′}) ∪ D ′;

Commentary: Same answer for ?? as in the previous slide.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 26

Blocked clause elimination

Now, we will look at a more general condition than pure literal to remove
clauses.

Definition 4.2
A clause C ∈ F is a blocked clause in F , if there is a literal ` ∈ C such that
for each C ′ ∈ F with ¬` ∈ C ′, there is a literal `′ such that `′ ∈ C and
¬`′ ∈ C ′ \ {¬`}.

claim:
We can safely disable blocked clauses, without affecting satisfiability.

called blocking literal

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 27

Example: blocked clause elimination

Example 4.4

In the following clauses, p1 is a blocking literal in the blocking clause C1.

C1 = (p1 ∨ p2 ∨ ¬p3)∧
C2 = (¬p3 ∨ ¬p2)∧
C3 = (¬p1 ∨ ¬p2)∧
C4 = (p1 ∨ ¬p5) ∧
C5 = (¬p1 ∨ p3 ∨ p4)

Only, C3 and C5 contain ¬p1.

p3 ∈ C5 is helping p1 to become blocked literal in C1, since negation of p3 is
present in C1.

Exercise 4.11
Which literal in C3 helping p1 to become blocked literal in C1?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 28

Soundness of blocking clause elimination

Theorem 4.1
If C is a blocking clause in F , then F and F \ C are equisatisfiable.

Proof.
Wlog, let C = `1 ∨ · · · ∨ `k and `1 be the blocking literal.
Let us suppose m |= F \ C and m 6|= C , otherwise proof is trivial.
Therefore, m(`i) = 0.

claim: m[`1 7→ 1] |= F
Choose C ′ ∈ F . Now three cases.

1. ¬`1 ∈ C ′: there is `i for i > 1(why?) such that `i ∈ C and ¬`i ∈ C ′.
Since m(`i) = 0, m[`1 7→ 1] |= C ′.(why?)

2. `1 ∈ C ′: Since m[`1 7→ 1] |= C ′, m[`1 7→ 1] |= C ′.

3. {`,¬`} ∩ C ′ = ∅: trivial.(why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 29

Implementing blocked clause elimination

http://fmv.jku.at/papers/JarvisaloBiereHeule-TACAS10.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 30

Compaction

The pre-processing changes the set of variables and clauses.

Before running CDCL,

I the solvers rename all the variables with contiguous numbers and

I clause lists are also compacted.

This increases cache locality, and fewer cache misses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 31

Latest trends in SAT solving

I Portfolio solvers

I Machine learned solver configuration

I Optimizations for applications, e.g., maxsat, unsatcore, etc.

I solving cryptography constraints

Exercise 4.12
Visit the latest SAT conference website. Skim a paper and write a
comment(400 chars max).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna SAT@Mandi 2019 Instructor: Ashutosh Gupta IITB, India 32

End of Lecture 4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Lazy data structures
	Other design choices
	Pre(in)-processing

