
cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 1

Program verification 2019

Lecture 2: Symbolic operators

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-01-08

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 2

Topic 2.1

Logical representation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 3

Computing reachable states

I Proving safety is computing reachable states.

I states are infinite =⇒ enumeration impossible
I To compute reachable states, we need

I finite representations of transition relation and
I ability to compute transitive closure of transition relation

I Idea: use logic for the above goals

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 4

Program statements as formulas (Notation)

I In logical representation, we add a new variable err in V to represent
error state. Initially, err = 0 and err = 1 means error has occurred.

I V ′ be the vector of variables obtained by adding prime after each
variable in V . We use V ′ to denote next value of variables.

I
For U ⊆ V , let frame(U) ,

∧
x∈V \U

(x ′ = x)

In case of singleton U, we only write the element as parameter.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 5

Program statements as formulas (contd.)
We define logical formula ρ for the data statements as follows.
I ρ(x := exp) , x′ = exp ∧ frame(x)
I ρ(x := havoc()) , frame(x)
I ρ(assume(F)) , F ∧ frame(∅)
I ρ(assert(F)) , F⇒ frame(∅)

Since control locations in a program are always finite, control statements
need not be redefined.

Example 2.1

Let V = [x , y , err].

I ρ(x := y + 1) = (x′ = y + 1 ∧ y′ = y ∧ err ′ = err)

I ρ(x := havoc()) = (y′ = y ∧ err ′ = err)

I ρ(assume(x > 0)) = (x > 0 ∧ x′ = x ∧ y′ = y ∧ err ′ = err)

I ρ(assert(x > 0)) = (x > 0⇒ (x′ = x ∧ y′ = y ∧ err ′ = err))

Exercise 2.1
Show ρ correctly models the assert statement

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 6

Topic 2.2

Aggregated semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 7

Strongest post: set of valuations to set of valuations

Definition 2.1
Strongest post operator sp : p(Q|V |)× P → p(Q|V |) is defined as follows.

sp(X , c) , {v ′|∃v : v ∈ X ∧ (v ′, skip) ∈ T ∗((v , c))},

where X ⊆ Q|V | and c is a program.

X sp(X , c)

×

Example 2.2

Consider V = [x] and X = {[n]|n > 0}.
sp(X , x := x + 1) = {[n]|n > 1}

Exercise 2.2
Why use of word
“strongest”?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 8

Symbolic sp
A formula in Σ(V) represents a set of valuations.
Hence, we define symbolic sp that transforms formulas.

sp : Σ(V)× P → Σ(V)

For data statements, the equivalent definition of symbolic sp is

sp(F , c) , (∃V : F ∧ ρ(c))[V /V ′].

Example 2.3

Let V = [x, y, err] and c = x := y + 1.
sp(y > 2, c) = (∃x, y, err . (y > 2 ∧ x′ = y + 1 ∧ y′ = y ∧ err ′ = err))[V /V ′]
= (y′ > 2 ∧ x′ > 3)[V /V ′] = (y > 2 ∧ x > 3)

Exercise 2.3

I sp(y > 2 ∧ err = 0, x := havoc()) = (y > 2 ∧ err = 0)

I sp(y > 2 ∧ err = 0, assume(y < 10)) = (10 > y > 2 ∧ err = 0)

I sp(y > 2 ∧ err = 0, assert(y < 0)) = >

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 9

Symbolic sp for control statements
For control statements, the equivalent definitions of symbolic sp are

sp(F , c1; c2) , sp(sp(F , c1), c2)

sp(F , c1[]c2) , sp(F , c1) ∨ sp(F , c2)

sp(F , if(F1) c1 else c2) , sp(F , assume(F1); c1) ∨ sp(F , assume(¬F1); c2)

sp(F , while(G) c) , sp(lfpF ′(F ∨ sp(F ′ ∧ G, c)), assume(¬G))

Example 2.4

sp(x = 0, if(y > 0) x := x + 1 else x := x− 1)
= (y > 0 ∧ x = 1 ∨ y ≤ 0 ∧ x = −1)

Exercise 2.4

1. sp(x + y > 0, assume(x > 0); y := y + 1)

2. sp(y < 2, while(y < 10) y := y + 1)

3. sp(y > 2, while(y < 10) y := y + 1)

4. sp(y = 0, while(>) y := y + 1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 10

Safety and symbolic sp

Theorem 2.1
For a program c, if 6|= sp(err = 0, c) ∧ err = 1 then c is safe.

Exercise 2.5
Prove the above lemma.

We need two key tools from logic to use sp as verification engine.

I quantifier elimination (for data statements)

I lfp computation (for loop statement)

There are quantifier elimination algorithms for many logical theories, e.g.,
integer arithmetic.

However, there is no general algorithm for computing lfp. Otherwise, the
halting problem is decidable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 11

Field of verification

This course is all about developing

incomplete but sound methods for lfp

that work for

some of the programs of our interest.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 12

Weakest pre — dual of sp

Now we define a an operator that executes the programs backwards!

Definition 2.2
Weakest pre operator wp : p(Q|V |)× P → p(Q|V |) is defined as follows.

wp(X , c) , {v |∀v ′ : (v ′, skip) ∈ T ∗((v , c))⇒ v ′ ∈ X},

where X ⊆ Q|V | and c is a program.

wp(X , c) X
×

Example 2.5

Consider V = [x] and X = {[n]|5 > n > 0}.
wp(X , x := x + 1[]x := x− 1) = {[n]|4 > n > 1}

Exercise 2.6
Why use of word
“weakest”?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 13

Logical weakest pre

We define symbolic wp that transforms formulas.

wp : Σ(V)× P → Σ(V)

The equivalent definition of symbolic wp for data statements are

wp(F , x := exp) , F [exp/x]

wp(F , x := havoc()) , ∀x .F
wp(F , assume(G)) , G ⇒ F

wp(F , assert(G)) , G ∧ F

Example 2.6

I wp((i ≤ 3 ∧ r = (i − 1)z + 1), i := 1) =

I wp((i < 3 ∧ r = iz + 1), r := r + z) =

I wp(x < 0, assume(x > 0)) =

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 14

Logical weakest pre

The equivalent definition of symbolic wp for control statements are

wp(F , c1; c2) , wp(wp(F , c2), c1)

wp(F , c1[]c2) , wp(F , c1) ∧ wp(F , c2)

wp(F , if(F1) c1 else c2) , wp(F , assume(F1); c1) ∧ wp(F , assume(¬F1); c2)

wp(F , while(G)c) , gfpF ′((G ∨ F) ∧ wp(F ′, assume(G); c))

Lemma 2.1
For a program c, if err = 0⇒ wp(err = 0, c) is valid then c is safe.

Exercise 2.7
Prove the above lemma.

Note: Our definition of wp is usually called weakest liberal precondition(wlp)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 15

Topic 2.3

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 16

Assignment

Exercise 2.8 (Assignment 1)

1. (.5) Example 1.10

2. (.5) Discuss weakest precondition(wp) vs. weakest liberal
precondition(wlp)

3. (1) Exercise 1.4

4. (1) Show sp(wp(F , c), c) ⊆ F ⊆ wp(sp(F , c), c)

5. (1) Write a C++ program that reads a SMT2 formula from command
line and performs quantifier elimination using Z3 for the variables that
do not end with ’

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 17

Strength complete

Exercise 2.9
Stregthening is complete strengthen(IM) 1 if 0 = IM(l 0) 2 then return
failed 3 elseif IM(l 1) = IM(l 2) for some transition hl 1 , , , l 2 i 4 then
construct such that IM(l 1) = IM(l 2) 5 return strengthen(IM[l 1 7 IM(l
1)]) 6 else return IM IM is inductive

Algo is complete is ψ is learned using weakest pre-condition. Otherwise, give
counter example for pre. (If the input is an invariant, then it should
terminate declaring so, as well as produce an inductive invariant map
(completeness).) Source: when is a Formula a Loop Invariant, Stephan Falke and Deepak Kapur

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 18

End of Lecture 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Logical representation
	Aggregated semantics
	Problems

