Program verification 2019

Lecture 2: Symbolic operators

Instructor: Ashutosh Gupta
IITB, India

Compile date: 2019-01-08

OO

Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

Topic 2.1

Logical representation

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Computing reachable states

» Proving safety is computing reachable states.
» states are infinite = enumeration impossible

» To compute reachable states, we need

» finite representations of transition relation and
P ability to compute transitive closure of transition relation

» Idea: use logic for the above goals

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Program statements as formulas (Notation)

» In logical representation, we add a new variable err in V' to represent
error state. Initially, err = 0 and err = 1 means error has occurred.

» V'’ be the vector of variables obtained by adding prime after each
variable in V. We use V' to denote next value of variables.

>
For U C V, let frame(U) = /\ (X' =x)
xeV\U

In case of singleton U, we only write the element as parameter.

Instructor: Ashutosh Gupta IITB, India

Program verification 2019

@O0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Program statements as formulas (contd.)
We define logical formula p for the data statements as follows.
> p(= exp) = x' = exp A frame(x)
p(x = havoc()) 2 frame(x)
p(assume(F)) £ F A frame(0)
p(assert(F)) £ F = frame(0)

Since control locations in a program are always finite, control statements
need not be redefined.

Example 2.1
Let V = [x,y,err].
px = y+1)=EF =y+1Ay =yAerr =err)
p(x := havoc()) = (y =y Aerr’ =err)
> p(assume(x>0)): (x>0Ax' =xAy =yAerr’ =err)
> plassert(x>0))=(x>0= (X' =xAy =yAerr’ =err))

Exercise 2.1
Show p correctly models the assert statement

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 2.2

Aggregated semantics

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Strongest post: set of valuations to set of valuations

Definition 2.1
Strongest post operator sp : p(QIV) x P — p(QIV) is defined as follows.

sp(X,c) = {V[Fv:ve XA(V,skip) € T*((v,c))},

where X C Q!V! and ¢ is a program.

Example 2.2 Exercise 2.2

Consider V = [x] and X = {[n]|n > 0}. Why use of word

sp(X,x:=x+1) = {[n]|n > 1} “strongest” ?
Program verification 2019 Instructor: Ashutosh Gupta IITB, India

@O0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Symbolic sp
A formula in X(V) represents a set of valuations.
Hence, we define symbolic sp that transforms formulas.

sp:X(V)x P —X(V)
For data statements, the equivalent definition of symbolic sp is

sp(F,c) = (3V : F Ap(c))[V/V].

Example 2.3

Let V =[x,y,err] and c =x =y + 1.

sp(y > 2,¢) = (Ix,y,err. (y>2 A% =y+ 1Ay =yAerr’ =err))[V/V']
=y >2Ad >3)[V/V]=(y>2Ax>3)

Exercise 2.3

» sp(y >2Aerr =0,x:=havoc()) = (y>2Aerr =0)
> sp(y >2Aerr =0,assume(y < 10)) = (10 >y >2Aerr =0)
» sp(y >2Aerr=0,assert(y <0))= T

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Symbolic sp for control statements
For control statements, the equivalent definitions of symbolic sp are
sp(F, c1;c2) = sp(sp(F,c1),)
sp(F, cif]c2) = sp(F,c1) V sp(F,)
(
(

sp(F,if(Fy) c1 else cp) = sp(F,assume(Fy); c1) V sp(F, assume(—F;); c2)
sp(F,while(G) c) = sp(Ifpr(F V sp(F' A G, c)), assume(—G))

Example 2.4

sp(x =0,if(y >0)x := x+1elsex = x—1)
=(y>0Ax=1Vy<0Ax=-1)

Exercise 2.4

1. sp(x+y > 0,assume(x > 0);y : =y + 1)
2. sp(y < 2,while(y <10) y:=y+1)

3. sp(y > 2,while(y < 10) y:=y + 1)
4. sp(y = 0,while(T)y:=y+1)

@O0 Program verification 2019

Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Safety and symbolic sp

Theorem 2.1
For a program c, if |~ sp(err = 0,¢) A err =1 then c is safe.

Exercise 2.5
Prove the above lemma.

We need two key tools from logic to use sp as verification engine.
» quantifier elimination (for data statements)

» /fp computation (for loop statement)

There are quantifier elimination algorithms for many logical theories, e.g.,
integer arithmetic.

However, there is no general algorithm for computing /fp. Otherwise, the
halting problem is decidable.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Field of verification

This course is all about developing

incomplete but sound methods for Ifp

that work for

some of the programs of our interest.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Weakest pre — dual of sp

Now we define a an operator that executes the programs backwards!

Definition 2.2
Weakest pre operator wp : p(QIV!) x P — p(QIV) is defined as follows.

wp(X,c) £ {v|VW : (V/,skip) € T*((v,c)) = v € X},

where X C Q! and ¢ is a program.

Example 2.5 Exercise 2.6
Consider V = [x] and X = {[n]|5 > n > 0}. Why use of word
wp(X,x :=x+1[]x:=x—1)={[n]|4 > n> 1} “weakest” ?

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Logical weakest pre

We define symbolic wp that transforms formulas.

wp:X(V)x P — X(V)

The equivalent definition of symbolic wp for data statements are

wp(F,x := exp) = Flexp/x]
wp(F,x := havoc()) = Vx.F
wp(F, assume(N2G=F
wp(F,assert(G)) = G A F

Example 2.6
> wp((i <3Ar=(i—1)z+1),i == 1)=
> wp((i <3Ar=iz+1),r == r+z)=
> wp(x < 0,assume(x > 0)) =

@O0 Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Logical weakest pre

The equivalent definition of symbolic wp for control statements are

wp(F, c1;) = wp(wp(F, c2), c1)
p(F C1[]C2) £ (F Cl)/\Wp(F C2)
(

(

S

wp(F,if(Fy) c1 else cp) = wp(F,assume(F;); c1) A wp(F, assume(—F;);)
wp(F,while(G)c) £ gfpr/((G V F) A wp(F', assume(G); ¢))

Lemma 2.1
For a program c, if err = 0 = wp(err = 0, ¢) is valid then c is safe.

Exercise 2.7
Prove the above lemma.

Note: Our definition of wp is usually called weakest liberal precondition(wlp)

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 2.3

Problems

OO

Program verification 2019

Instructor: Ashutosh Gupta

IITB, India

15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Assignment

Exercise 2.8 (Assignment 1)

1. (.5) Example 1.10

2. (.5) Discuss weakest precondition(wp) vs. weakest liberal
precondition(wip)

3. (1) Exercise 1.4

4. (1) Show sp(wp(F,c),c) C F C wp(sp(F,c),c)

5. (1) Write a C++ program that reads a SMT2 formula from command
line and performs quantifier elimination using Z3 for the variables that
do not end with ’

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 16

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Strength complete

Exercise 2.9

Stregthening is complete strengthen(IM) 1 if 0 = IM(1 0) 2 then return
failed 3 elseif IM(1'1) = IM(I 2) for some transition hl 1, ,, 12 i 4 then
construct such that IM(11) = IM(l 2) 5 return strengthen(IM[l 1 7 IM(]
1)]) 6 else return IM IM is inductive

Algo is complete is 1) is learned using weakest pre-condition. Otherwise, give
counter example for pre. (If the input is an invariant, then it should
terminate declaring so, as well as produce an inductive invariant map

(Comp|eteneSS)) Source: when is a Formula a Loop Invariant, Stephan Falke and Deepak Kapur

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

End of Lecture 2

@O0

Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Logical representation
	Aggregated semantics
	Problems

