
cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 1

Program verification 2019

Lecture 3: Hoare logic and Invariants

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-01-15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 2

Where are we and where are we going?

We have

I defined a simple language

I defined small step operation semantics of the language

I defined logical view of program statements

I defined strongest post and weakest pre

I defined logical strongest post and weakest pre

We will

I Hoare logic

I labelled transition system

I we cover some methods that try/avoid to compute lfp

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 3

Topic 3.1

Hoare logic

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 4

Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Such a proof method has following steps
I write (guess) a super set of reachable states
I show it is actually a super set
I show it does not intersect with error states

I First such method was proposed by Tony Hoare
I it is sometimes called axiomatic semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 5

Hoare Triple

Definition 3.1

{P}c{Q}

I P : Σ(V), usually called precondition

I c : P
I Q : Σ(V), usually called postcondition

Definition 3.2
{P}c{Q} is valid if all the executions of c that start from P end in Q, i.e.,

∀v , v ′. v |= P ∧ ((v , c), (v ′, skip)) ∈ T ∗ ⇒ v ′ |= Q.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 6

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 7

Hoare Proof System

{P}skip{P}
(skip rule)

{P[exp/x]}x := exp{P}
(assign rule)

{∀x .P}x := havoc(){P}
(havoc rule)

{P}assume(F){F ∧ P}
(assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 8

Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 9

Example Hoare proof

Example 3.2

{>}
r := 1;
{r = 1}
i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}
i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}
{>}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{P5 , i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 10

Topic 3.2

Program as labeled transition system

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 11

A more convenient program model

I Simple language has many cases to write an algorithm

I automata like program models allow more succinct description of
verification methods

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 12

Program as labeled transition system (LTS)

Definition 3.3
A program P is a tuple (V , L, `0, `e ,E), where

I V is a vector of variables,

I L be set of program locations,

I `0 is initial location,

I `e is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 3.3 `0

`1

`e

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {`0, `1, `e}
E = {(`0, x

′ = 1, `1),
(`1, x

′ = x + 2, `1),
(`1, x < 0, `e)}

Notation:
If e = (`, ρ(V ,V ′), `′) ∈ E ,
then
e(V ,V ′) , ρ(V ,V ′),
e(loc) , ` and
e(loc ′) , `′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 13

Guarded command
Definition 3.4 (Guarded command)

A guarded command is a pair of a formula in Σ(V) and a sequence of update
constraints (including havoc) of variables in V .

Note: we may write transition formulas as guarded commands. Havoc encodes inputs.

Example 3.4

Consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y.

Example 3.5
`0

`1

`e

(>, [x := 1])

(x < 0, [])

(>, [x := x + 2])

simplified view →

`0

`1

`e

x := 1

x < 0

x := x + 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 14

Semantics
Consider program P = (V , L, `0, `e ,E).

Definition 3.5
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.6
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i) and ei+1 = (`i , , `i+1).

Definition 3.7
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8
P is safe if there is no execution of P from `0 to `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 15

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 16

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 17

Cut-points

Definition 3.10
For a program P = (V , L, `0, `e ,E), CutPoints(P) is the a minimal subset
of L such that every path of P containing a loop passes through one of the
location in CutPoints(P).

CutPoints(P) in LTS loop heads in simple language

Example 3.8

Consider the following program P.

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

x := x + 1

`5

x ≥ 10

`e

i < 0

CutPoints(P) = {`1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 18

Reminder: symbolic strongest post

sp : Σ(V)× Σ(V ,V ′)→ Σ(V)

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V : F (V) ∧ ρ(V ,V ′))[V /V ′]

We assume that ρ and F are in a theory that admits quantifier elimination

Using polymorphism, we also define sp((`,F), (`, ρ, `′) ∈ E) , (`′, sp(F , ρ)).

For path π = e1, .., en of P, sp((`,F), π) , sp(sp((`,F), e1), e2..en).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 19

Topic 3.3

Loop invariants

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 20

Invariants

Definition 3.11
For P, a map I : L→ Σ(V) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 3.12
For P, a map I : L→ Σ(V) is called inductive if, for each (`, ρ, `′) ∈ E ,

sp(I(`), ρ)⇒ I(`′).

Definition 3.13
For P, a map I : L→ Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 3.1
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 21

Cut-point invariant maps
Let P be a program and C = CutPoints(P) ∪ {`0, `e}.

Definition 3.14
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 22

Annotated verification: VCC demo

http://rise4fun.com/Vcc

Exercise 3.2
Complete the following program such that Vcc proves it correct

#include <vcc.h>

int main()

{

int x, y;

_(assume x > y +3 && x < 3000)

while(0 < y) _(invariant) {

x = x + 1;

y = y -1;

}

_(assert x >= y)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://rise4fun.com/Vcc

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 23

Annotated verification

I There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

I Rest of the verification is done as discussed in earlier slides

I User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 24

Topic 3.4

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 25

Problem 1

1. (1) Prove the following Hoare triple is valid

{true}

assume(n > 1);

i = n;

x = 0;

while(i > 0) {

x = x + i;

i = i - 1;

}

{ 2x = n*(n+1) }

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 26

Problem 2

2. (1) Fill the annotations to prove following program correct via Vcc

#include <vcc.h>

int main()

{

int x = 0, y = 2;

_(assume 1==1)

while(x < 3) _(invariant ...) {

x = x + 1;

y = 3;

}

_(assert y == 3)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 27

Problem 3

3. (2) extend your tool in the last assignment in the following ways
I define classes for

I locations,
I variables,
I guarded commands,
I transitions (give names to the transitions), and
I programs

I encode the program in example ?? using the class
I Write a function that computes path constraints for a given path
I Read path from command line as space separated transition names and

output the path constraints

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 28

Problem 4

Exercise 3.3
Write inductive invariants at the loop heads in the following sorting
algorithms such that they prove that at the end array is sorted.
I Bubble sort

procedure bubbleSort(A : list of sortable items)

n = length(A)

repeat

swapped = false

for i = 1 to n-1 inclusive do

if A[i-1] > A[i] then

swap(A[i-1], A[i])

swapped = true

end if

end for

until not swapped

end procedure

I Quick sort
function merge_sort(list m)

if length of m <= 1 then

return m

var left := empty list

var right := empty list

for each x with index i in m do

if i =< (length of m)/2 then

add x to left

else

add x to right

left := merge_sort(left)

right := merge_sort(right)

return merge(left, right)

function merge(left, right)

var result := empty list

while left is not empty and right is not empty do

if first(left) =< first(right) then

append first(left) to result

left := rest(left)

else

append first(right) to result

right := rest(right)

while left is not empty do

append first(left) to result

left := rest(left)

while right is not empty do

append first(right) to result

right := rest(right)

return result

I Selection sort

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 29

Exercise

Podelski Trace abstraction example. TAPAS’17

int main(int n) {

assume(p == 0);

while(n > 0) {

assert(p != 0);

if(n== 0) {

p = 0;

}

n--;

}

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 30

Exercise

Write inductive loop invariants and prove Hoare logic!! Make a question out
of the problem.

int main (int A[N] , int B[N] , int C[N]) {

int i;

int j = 0;

for (i = 0; i < N ; i++) {

if (A[i] == B[i]) {

C[j] = i;

j = j + 1;

}

}

assert(forall (int x) :: (0 <= x && x < j) ==> (C[x] <= x + i - j));

assert(forall (int x) :: (0 <= x && x < j) ==> (C[x] >= x));

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 31

End of Lecture 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Hoare logic
	Program as labeled transition system
	Loop invariants
	Problems

