Program verification 2019

Lecture 3: Hoare logic and Invariants

Instructor: Ashutosh Gupta
IITB, India

Compile date: 2019-01-15

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

Where are we and where are we going?

We have
defined a simple language

defined small step operation semantics of the language

>
>
» defined logical view of program statements
» defined strongest post and weakest pre

>

defined logical strongest post and weakest pre

We will
» Hoare logic
» labelled transition system

> we cover some methods that try/avoid to compute Ifp

@O0 Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 3.1

Hoare logic

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Hoare logic - our first method of verification

Computing a super set of the reachable states(Ifp) that does not
intersect with error states should be suffice for our goal

Since we do not know how to compute Ifp, we will first see a method of
writing pen-paper proofs of program safety

Such a proof method has following steps

> write (guess) a super set of reachable states
» show it is actually a super set
P> show it does not intersect with error states

First such method was proposed by Tony Hoare
» it is sometimes called axiomatic semantics

@O0

Program verification 2019 Instructor: Ashutosh Gupta IITB, India 4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Hoare Triple

Definition 3.1

{Pic{Q}

» P :%(V), usually called precondition
> c: P
> Q:X(V), usually called postcondition

Definition 3.2
{P}c{Q} is valid if all the executions of c that start from P end in Q, i.e.,

Vv, V. vE PA((v,c), (V,skip)) € T" =V E Q.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program Hoare triple
assume(T) {T}
r.=1; r:=1;
i=1, i:=1
while(i < 3) - while(i < 3)
{ {
r.=r+z r.=1r+ 2z
i=i41 i=i+1
} }
assert(r =2z + 1) {r=2z+1}

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Hoare Proof System

W(Skip rule)

{Plexp/x]}x = exp{P}(aSSign rule)

{Vx.P}x = havoC(){P}(havoc rule)

{P}assume(F){F A P} (assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Hoare Proof System (contd.)

{Prci{@} {Q}cofR}

composition rule
{PlevicalR} O)

{Prci{@} {P}ea{Q}
{Preille2{ @}

{FAP}ei{Q} {-FAP}co{Q}
{P}if(F) c1 else c2{Q}

(nondet rule)

(if rule)

Pr= P, {P}jc{@} Q= Q1
{Pr}c{Q:}

(Consequence rule)

{IAF}c{I} _
[Tjwhite(F) o{-F AT} e "Me)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example Hoare proof

Example 3.2
Consider loop invariant: T = (i <3Ar=(i—1)z+1)
{T}
r:=1; {Tr=Hr=1} {r=1}i:=1{1}
{r=1} {T}r:=1i:=1,{1}
i=1;
1 | _ |
while(i<3) {I<3/\I} {P5:I<3/\r:IZ+1}
{ ri=r+z i=i+1
(TAi<3) {i<3Ar=iz+1} {1}
r—r4z {i<3AI}r:=r+zi:=1i+1{1}
{Ps} . , .
i—idl {Tr:=11i:=1,{1} {i<3AI}lr:=r+zi:=1i+1{I}
} {T}r:=1,.;while(..).{T A1 >3} INi>3=r=2z+1
{r — 274 1} {T}r:=1,.;while(..)..{r=2z+1}

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 9

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 3.2

Program as labeled transition system

OO

Program verification 2019 Instructor: Ashutosh Gupta IITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

A more convenient program model

» Simple language has many cases to write an algorithm

» automata like program models allow more succinct description of
verification methods

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Program as labeled transition system (LTS)

Definition 3.3
A program P is a tuple (V, L, ly, le, E), where

» V s a vector of variables,

» L be set of program locations,

» (o is initial location,

» (. is error location, and

> ECLxX(V,V')x Lis a set of labeled transitions between locations.

Example 3.3 @
V =[] Notation:
x' =1 L= {lo, 1,0} Ife=(lp(V,V),0)€E,
, E = {(fo,X, = 1,51), then
X =x+2 @ (617X/:X+2;€1)7 e(V7 \//)ép(v, V/)'
x<0 (f1,x < 0,0e)} e(loc) = ¢ and

e(loc’) 2 ¢

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Guarded command
Definition 3.4 (Guarded command)

A guarded command is a pair of a formula in ¥(V') and a sequence of update
constraints (including havoc) of variables in V.

Note: we may write transition formulas as guarded commands. Havoc encodes inputs.

Example 3.4

Consider V = [x,y]|. The formula represented by the guarded command
x>y, [x=x+1])isx>yAx =x+1Ay =y.

(T, [x:=1])

(T,[x:=x+2]) @

(x <0,[)

@ simplified view —

Example 3.5

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Semantics
Consider program P = (V, L, {y,le, E).

Definition 3.5
A state s = (¢, v) of a program is program location ¢ and a valuation v of V.

Let v(x) £ value of variable x in v
For state s = (¢, v), let s(x) = v(x) and s(loc) = ¢

Definition 3.6

A path m=ey,...,e, in P is a sequence of transitions such that, for each
0<i<n, e=li—1,-,¢;) and ei11 = (i, -, liy1).

Definition 3.7

An execution corresponding to path e1, ..., e, is a sequence of states

(o, v0), - - -, (€n,vn) such that Vi € 1..n, e;(vi_1,v;) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8

P és©safe if there is no execution of P from ¢y to {,.

Program verification 2019 Instructor: Ashutosh Gupta IITB, India 14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Path constraints
V; £ variable vector obtained by adding subscript i after each variable in V.

Definition 3.9
For a path mey, ..., e,, path constraints is \;cq , €(Vi-1, V).
A path is feasible if corresponding path constraints is satisiable.

Let PATHCONS(7) returns path constraints of 7. Path constraints are also
Theorem 3.1 known as “SSA formulas”

A path is feasible then there is an execution that corresponds to the path.

Example 3.6

Consider path
(bo,x:=1,01), (b1, x:=x+2,01), ({1,x < 0,e)

Path constraint for the path is
F:(Xlzl/\X2:X1—|—2/\X2<0)

Since F is unsat, there is no execution along the path

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

From simple language to labelled transition system

Theorem 3.2

Show simple programming language is isomorphic to the labelled transition

system.

Example 3.7

LO: i = 0;
L1: while(x < 10) {
L2: if x > O then
L3: i=1i+1

else
L4: skip

}
L5: assert(i >= 0)

@O0 Program verification 2019

Instructor: Ashutosh Gupta

IITB, India

16

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Cut-points

Definition 3.10

For a program P = (V, L, {y, L, E), CUTPOINTS(P) is the a minimal subset
of L such that every path of P containing a loop passes through one of the
location in CuTPOINTS(P).

CuTPOINTS(P) in LTS loop heads in simple language
Example 3.8
Consider the following program P.

@x::x+1

x>0

x =0 CutPoINTS(P) = {/1}

OO e Program verification 2019 Instructor: Ashutosh Gupta IITB, India 17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Reminder: symbolic strongest post

sp: (V) x Z(V, V)= Z(V)
We define symbolic post over labels of P as follows.

sp(F.p) = AV F(V) Ap(V, V)IV/V']

We assume that p and F are in a theory that admits quantifier elimination
Using polymorphism, we also define sp((¢, F), (¢, p,¢') € E) = (¢, sp(F, p)).

For path m = ey, .., e, of P, sp((¢, F),7) £ sp(sp((¢, F), e1), e2..en).

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 3.3

Loop invariants

OO

Program verification 2019

Instructor: Ashutosh Gupta

IITB, India

19

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Invariants

Definition 3.11
For P, amap1: L — ¥(V) is called invariant map if, for each ¢ € L, all
reachable states at { satisfy 1(¢).

Definition 3.12
For P, amap1: L — ¥ (V) is called inductive if, for each (¢, p,¢') € E,

sp(1(€), p) = 1(¢').
Definition 3.13
For P, amapl: L — ¥(V) is called safe if I({y) = T and I({e) = L

Theorem 3.3

For P, if 1 is inductive and safe then 1 is an invariant and P is safe.

| Invariant checking: is I a safe inductive invariant map?|

Exercise 3.1
What is the algorithm for invariant checking?

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Cut-point invariant maps
Let P be a program and C = CUTPOINTS(P) U {{g, le}.

Definition 3.14
Amap1:C — X(V) is called cut-point invariant map if, for each £ € C, all
reachable states at { satisfy 1({).

Definition 3.15
A map1:C — X(V) is called inductive if, for each ¢,¢' € C and
7 € LOOPFREEPATHS(P, ¢, ¢), sp(1(¢),) = 1(¢).

Definition 3.16
Amapl: C— X(V) is called safe if 1(€g) = T and I(¢.) = L

Theorem 3.4
If 1 is inductive and safe then 1 is an cut-point invariant map and P is safe.

Proof.
Every path from £y to £. can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible. Ol

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Annotated verification: VCC demo

http://rised4fun.com/Vcc

Exercise 3.2
Complete the following program such that Vcc proves it correct

#include <vcc.h>
int main()
{
int x, y;
_(assume x > y +3 && x < 3000)
while(0 < y) _(invariant) {
X =x+1;
y=y L
}
_(assert x >= y)
return O;

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://rise4fun.com/Vcc

Annotated verification

» There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

» Rest of the verification is done as discussed in earlier slides

» User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

23

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 3.4

Problems

OO

Program verification 2019

Instructor: Ashutosh Gupta

IITB, India

24

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Problem 1

1. (1) Prove the following Hoare triple is valid

{true}

assume(n > 1);

i = n;

x = 0;

while(i > 0) {
X =x + i,
i=1i-1;

{ 2x = nx(n+1) }

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Problem 2

2. (1) Fill the annotations to prove following program correct via Vec

#include <vcc.h>

int main()

{
int x =0, y =
_(assume 1==1)
while(x < 3)

2;

_(invariant ...) {

_(assert y == 3)
return O;

}

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Problem 3

3. (2) extend your tool in the last assignment in the following ways
> define classes for
» locations,
P variables,
» guarded commands,
> transitions (give names to the transitions), and
> programs
P encode the program in example ?? using the class
» Write a function that computes path constraints for a given path
» Read path from command line as space separated transition names and
output the path constraints

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Problem 4

Exercise 3.3

Write inductive invariants at the loop heads in the following sorting
algorithms such that they prove that at the end array is sorted.

» Bubble sort

procedure bubbleSort(A : list of sortable items)
n = length(A)
repeat
swapped = false
for i = 1 to n-1 inclusive do
if A[i-1] > A[i] then
swap(A[i-1], A[i])
swapped = true
end if
end for
until not swapped
end procedure

» Quick sort

function merge_sort(list m)
if length of m <= 1 then
return m
var left := empty list
var right := empty list
for each x with index i in m do
if i =< (length of m)/2 then
add x to left
else
add x to right

e R T ¢

Instructor: Ashutosh Gupta

IITB, India

28

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise

Podelski Trace abstraction example. TAPAS'17

int main(int n) {
assume(p == 0);
while(n > 0) {
assert(p !'= 0);
if(n==0) {
p=0;

n--;

@O0 Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

29

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise

Write inductive loop invariants and prove Hoare logic!! Make a question out
of the problem.

int main (int AL N] , int BLN] , int C[L N]) {
int i;
int j = 0;
for (i =0; 1 < N ; i++) {
if (A[i] == B[i]) {
cljl = 1;
=i+
}
}

assert(forall (int x) :: (0 <=x & x < j) ==> (Clx] <«
assert(forall (int x) (0<=x&& x < j) ==> (Clx] >

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 30

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

End of Lecture 3

@O0

Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

31

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Hoare logic
	Program as labeled transition system
	Loop invariants
	Problems

