Program verification 2019

Lecture 4: Automated reachability

Instructor: Ashutosh Gupta
IITB, India

Compile date: 2019-01-15

OO

Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

Topic 4.1

Concrete model checking - enumerate reachable states

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Isn't enumeration impossible?

>

| 2

>

Explore the transition graph explicitly, light weight machinery
If edge labels are guarded commands then finding next values are trivial

After resolving non-determinism, concrete model checking reduces to
program execution

May be only finitely many states are reachable

May be impossible to cover all states explicitly, but it may cover a
portion of interest

Useful for learning design principles of computing reachable states

@O0

Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Concrete model checking

Algorithm 4.1: Concrete model checking

Input: P=(V,L, {0, E)
Output: SAFE if P is safe, UNSAFE otherwise
reach = 0;
worklist = {(lo, v)|v € Z!VI};
while worklist # () do the choice defines the

choose (£, v) € Work/ist;%nature of exploration]
worklist = worklist \ {(¢,v)};
if (¢,v) ¢ reach then

reach := reach U {(¢,v)};

foreach (¢, F(V,V’),¢') € E do

L worklist = worklist U {(¢',v')|F(v,Vv")};

if ({e,_) € reach then '
| return UNSAFE Exercise 4.1
else Suggest improvements in the algorithm

L return SAFE

@O0 Program verification 2019 Instructor: Ashutosh Gupta 1ITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: concrete model checking

Example 4.1

Consider the following example = .. = .
Initialization:

reach = (), worklist = {(fo, v)|v € Z?}

0<x<9,i=x
x>4x:=x—1,
i=1i-1
x<4Ni#x

Choose a state:
Lets choose ({y, [8,0])

Update worklist:
worklist := worklist \ {(o, [8,8])}

Add successors in worklist if state not visited:
Let V =[x, 1] worklist := worklist U {(¢1,[8,8])}
reach := reach U {(¢o, [8,0])}

... go back to choosing a new state from worklist

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 5

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Search strategies

» DFS
» BFS
> A*
» worklist is a priority queue,

> weights are assigned to states based on estimate on possibility of reaching
error

Exercise 4.2
Describe A* search strategy

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 6

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Optimizations: exploiting structure

» Symmetry reduction
» Assume guarantee

» Partial order reduction (for concurrent systems)

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Optimizations: reducing space

» hashed states - reach set contains hash of states (not sound)

> Stateless exploration - no reach set (redundant)

Trade-off among time, space, and soundness

Exercise 4.3
Write concrete model checking using hash tables

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Proof and counterexample

Definition 4.1

A proof of a program is an object that allows one to check safety of the
program using a low complexity (preferably linear) algorithm

in the size of the object.

Example 4.2

In our concrete model checking algorithm, reach set is the proof. The
checker needs to find that no more states can be reached from reach.

Definition 4.2
A counterexample of a program is an execution that ends at (.

A verification method may produce three possible outcomes for a program
» proof
» counterexample

» unknown or non-termination

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Enabling counterexample generation

Algorithm 4.2: Concrete model checking
Input: P=(V,L, {0, E)
Output: SAFE if P is safe, UNSAFE otherwise
reach := (); parents := Ax.NAN :
worklist = {(lo, v)|v € Z!VI};
while worklist # () do
choose (¢, v) € worklist;
worklist = worklist \ {(¢,v)};
if (¢,v) ¢ reach then

reach = reach U {(¢,v)};

foreach V' s.t. F(v,Vv') issat A(¢, F(V,V'), V') € E do

L worklist = worklist U {(¢',v')}; parents((¢',V")) = (¢, v);

Exercise 4.4
add data structure to
report counterexample

if ({e,v) € reach then

‘ return UNSAFE(traverseTolnit(parents, ({e, v)))
else

| return SAFE

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 4.2

Symbolic methods

OO

Program verification 2019

Instructor: Ashutosh Gupta

IITB, India

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Why symbolic?

To avoid, state explosion problem

@O0 Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Symbolic methods

Now, we cover some methods that try/avoid to compute Ifp
» Symbolic model checking

» Constraint based invariant generation

@O0 Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Symbolic state

Definition 4.3
A symbolic state s of P = (V, L, {o,le, E) is a pair ({,F), where

> (el

» F is a formula over variables V in a given theory

OO Program verification 2019 Instructor: Ashutosh Gupta IITB, India

14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Symbolic model checking

Algorithm 4.3: Symbolic model checking

Input: P = (V, L, lo, Lo, E)

Output: SAFE if P is safe, UNSAFE otherwise

reach: L — X (V) = Ax.L;

worklist = {(¢p, T)};

while worklist # () do

choose (¢, F) € worklist;

worklist := worklist \ {(¢, F)};

if —(F = reach(?)) is sat then
reach := reach[l — reach({)V F];
foreach (¢,p(V,V’),0') € E do

L worklist := worklist U {(¢',sp(F,p))};

if reach({e) # L then Note: We need efficient implementations of various

‘ return UNSAFE logical operators!
else Exercise 4.5

L return SAFE

Give a condition for definite termination?

@O0 Program verification 2019 Instructor: Ashutosh Gupta

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: symbolic model checking

Example 4.3
“onsider the following

example
()

0<x<9,i=x

XZ:X—LC@D

i=i—-1

x<4ANi#x

Let V =[x, i]

Init: reach = Ax.L, worklist = {(4o, T)}

Choose a state: ({o, T) (only choice)

Update worklist: worklist := ()

Add successors in worklist:

Since =(T = reach({p)) is sat,
worklist := worklist U {(¢1,0 < x =i < 9)}
reach({y) := reach(bp) V T =T

Again choose a state: {({1,0 < x=1i<09)}

Update worklist: worklist := ()

Add successors in worklist:

Since (0 < x =i < 9 = reach(¢1)) is sat,
worklist := worklist U{(¢1,3 < x =i <9),(le, L)}
reach(¢1) := reach(/1) VO < x=1i<9
reach({.) := reach({e) V L

Exercise 4.6
complete the run of the algorithm

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 16

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Proof generation

If the symbolic model checker terminates with the answer SAFE, then it must
also report a proof of the safety, which is the reach map.

It has implicitly computed a Hoare style proof of P = (V, L, g, le, E).
(L, p(V, V'), ') e E {reach({)}p(V, V"){reach(¢')}

If an LTS program has been obtained from a simple language program then
one may generate a Hoare style proof system.

Exercise 4.7
Describe the construction for the above translation

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 4.3

Constraint based invariant generation

OO

Program verification 2019 Instructor: Ashutosh Gupta IITB, India

18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Invariant generation using constraint solving

| Invariant generation: find a safe inductive invariant map |

» This is our first method that computes the fixed point automatically
without resorting to some kind of enumeration

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

19

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Templates

Let L= {lo,-..,/n,le},
Let V = {Xl,...,Xm}

We assume the following templates for each invariant in the invariant map.

I(h)=0<0
Viel.n I(l) = (piix1 + - PimXm < pio)
(/) =0 < —1

pjj are called parameters to the templates and they define a set of candidate
invariants.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Constraint generation

A safe inductive invariant map I must satisfy for all (/;,p, i) € E
sp(1(1), p) = 1(I).

The above condition translates to

YV, V' (pirxt + ... pimXm < pio) A p(V, V') = (piixq + ... pirmXt < Pirg)

Our goal is to find pjs such that the above constraints are satisfied.
Unfortunately there is quantifier alternation in the constraints. Therefore,
they are hard to solve.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Constraint solving using Farkas lemma

If all ps are linear constraints then we can use Farkas lemma to turn the
validity question into a “conjunctive satisfiablity question”

Lemma 4.1

For a rational matrix A, vectors a and b, and constant c,
VX.AX < b= aX <ciff

IN>0.ATA=aand \Th<c

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Application of farkas lemma

Consider (I;,(AV + A’V < b),ln) € E

After applying Farkas lemma on

YV, V' (pirxt + - Pimxm < pio) A p(V, V') = (pinixq + - - - PirmXm < Pio),
we obtain

X0 A (Nolpity -5 Pim] FATA)Y =0ANTA = [pj, ..., pirm]A
Xopio + ATb < ping

All the variables pj;;s and As are existentially quantified, which can be solved
by a quadratic constraints solver.

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 23

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: invariant generation

Example 4.4

Consider the following

We assume the following invariant template at ¢1:
example

@ I(¢1) = (p1x + p2y < po)
0

x:=2,y:=3 We generate the following constraints for program
transitions:

y <10,
X=X 17 ED For ﬁo to 51,
y=y+1 Ve y'. ¥ =2AY =3 = (pi¥ + p2y’ < po)

y>10Ax > 10
For ¢1 to {1,

@ Vx, v,y (p1x+ poy < po) Ay < 10AXY =x—1A
Y =y+1= (px' + p2y < po)
Let V =[x,
© [x,y] For 41 to {,
Vx,y. (pix+ p2y < po) ANy >10Ax>10= L

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 24

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: invariant generation(contd.)

Now consider the second constraint:
vx? y7 Xl’ y/'
(pix+p2y < po) Ay < I0AY =x—1Ay =y+1= (p1x’ + P2y’ < po)

Matrix view of the transition relation y < 10Ax' =x— 1Ay =y +1

0O 1 0 0 10
1 0 -1 0 * 1
-1 0 1 0 T l1<| -1
o 1 o0 -1|]F% -1
0 -1 0 1 y 1

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 25

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: invariant generation(contd.)
Applying farkas lemma on the constraint, we obtain

[p1 p2 0O 0]

0 1 0 0

1 0 -1 O

[X A1 X A3 A Xs | 1 0 1 o0 =[0 0 p1 p]

0 1 0o -1

0 -1 0 1 |
o T
10
1

[Ao A1 X2 A3 A As | 1 <[po |

-1
1

Exercise 4.8
Apply farkas lemma on the other two implications
vy X' =2Ay =3= (pix' + p2y’ < po)
V2, v. (p1x+ ooy < pg) Ay >10Ax>10= L

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India 26

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Does this method work?

» Quadratic constraint solving does not scale

» For small tricky problems, this method may prove to be useful

@O0 Program verification 2019 Instructor: Ashutosh Gupta IITB, India

27

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 4.4

Problems

OO

Program verification 2019

Instructor: Ashutosh Gupta

IITB, India

28

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

End of Lecture 4

@O0

Program verification 2019 Instructor: Ashutosh Gupta

IITB, India

29

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Concrete model checking - enumerate reachable states
	Symbolic methods
	Constraint based invariant generation
	Problems

