# Program verification 2019

## Lecture 4: Automated reachability

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-01-15

### Topic 4.1

Concrete model checking - enumerate reachable states

### Isn't enumeration impossible?

- Explore the transition graph explicitly, light weight machinery
- ▶ If edge labels are guarded commands then finding next values are trivial
- After resolving non-determinism, concrete model checking reduces to program execution
- May be only finitely many states are reachable
- May be impossible to cover all states explicitly, but it may cover a portion of interest
- Useful for learning design principles of computing reachable states

## Concrete model checking

### **Algorithm 4.1:** Concrete model checking

```
Input: P = (V, L, \ell_0, \ell_e, E)
Output: SAFE if P is safe, UNSAFE otherwise
reach := \emptyset:
worklist := \{(\ell_0, v) | v \in \mathbb{Z}^{|V|}\}; while worklist \neq \emptyset do vorklist \in \mathbb{Z}^{|V|} the choice defines the nature of exploration
      worklist := worklist \setminus \{(\ell, v)\};
     if (\ell, v) \notin reach then
           reach := reach \cup \{(\ell, v)\};
           foreach (\ell, F(V, V'), \ell') \in E do
            worklist := worklist \cup \{(\ell', v')|F(v, v')\};
if (\ell_e, \_) \in reach then
```

return Unsafe else

Exercise 4.1

Suggest improvements in the algorithm

return SAFE

## Example: concrete model checking

#### Example 4.1





Initialization:

$$\mathit{reach} = \emptyset$$
,  $\mathit{worklist} = \{(\ell_0, v) | v \in \mathbb{Z}^2\}$ 

Choose a state:

Lets choose  $(\ell_0, [8, 0])$ 

Update worklist:

 $worklist := worklist \setminus \{(\ell_0, [8, 8])\}$ 

$$\textit{Let } V = [\mathtt{x}, \mathtt{i}]$$

Add successors in worklist if state not visited: worklist := worklist  $\cup \{(\ell_1, [8, 8])\}$ 

reach := reach  $\cup$  { $(\ell_0, [8, 0])$ }

... go back to choosing a new state from worklist

### Search strategies

- DFS
- ► BFS
- ► A\*
  - worklist is a priority queue,
  - weights are assigned to states based on estimate on possibility of reaching error

#### Exercise 4.2

Describe A\* search strategy

### Optimizations: exploiting structure

- Symmetry reduction
- ► Assume guarantee
- Partial order reduction ( for concurrent systems )

### Optimizations: reducing space

- hashed states reach set contains hash of states (not sound)
- ► Stateless exploration no reach set (redundant)

Trade-off among time, space, and soundness

#### Exercise 4.3

Write concrete model checking using hash tables

### Proof and counterexample

#### Definition 4.1

A proof of a program is an object that allows <u>one</u> to check safety of the program using a low complexity (preferably linear) algorithm in the size of the object.

### Example 4.2

In our concrete model checking algorithm, reach set is the proof. The checker needs to find that no more states can be reached from reach.

#### Definition 4.2

A counterexample of a program is an execution that ends at  $\ell_e$ .

A verification method may produce three possible outcomes for a program

- proof
- counterexample
- unknown or non-termination

## Enabling counterexample generation

#### Algorithm 4.2: Concrete model checking

```
Input: P = (V, L, \ell_0, \ell_e, E)
Output: SAFE if P is safe, UNSAFE otherwise
reach := \emptyset; parents := \lambda x.NAN;
worklist := \{(\ell_0, v)|v \in \mathbb{Z}^{|V|}\};
while worklist \neq \emptyset do
    choose (\ell, v) \in worklist;
    worklist := worklist \ \{(\ell, v)\};
    if (\ell, v) \notin reach then
         reach := reach \cup \{(\ell, v)\};
         foreach v' s.t. F(v, v') is sat \wedge (\ell, F(V, V'), \ell') \in E do
```

Exercise 4.4 add data structure to report counterexample

```
if (\ell_e, v) \in reach then
```

return Unsafe(traverseToInit(parents,  $(\ell_e, v)$ ))

else

return Safe

worklist := worklist  $\cup \{(\ell', v')\}$ ; parents $((\ell', v')) := (\ell, v)$ ;

## Topic 4.2

### Symbolic methods

Why symbolic?

To avoid, state explosion problem



### Symbolic methods

Now, we cover some methods that try/avoid to compute Ifp

- Symbolic model checking
- Constraint based invariant generation

### Symbolic state

#### Definition 4.3

A symbolic state s of  $P = (V, L, \ell_0, \ell_e, E)$  is a pair  $(\ell, F)$ , where

- $\blacktriangleright$   $\ell \in L$
- F is a formula over variables V in a given theory

# Symbolic model checking

### **Algorithm 4.3:** Symbolic model checking

```
Input: P = (V, L, \ell_0, \ell_e, E)
Output: SAFE if P is safe. UNSAFE otherwise
```

reach : 
$$L \rightarrow \Sigma(V) := \lambda x.\bot$$
;

worklist 
$$:=\{(\ell_0, op)\};$$

while worklist 
$$\neq \emptyset$$
 do

choose 
$$(\ell, F) \in worklist$$
;

worklist := worklist \ 
$$\{(\ell, F)\};$$

**if** 
$$\neg(F \Rightarrow reach(\ell))$$
 is sat **then**

reach := reach[
$$\ell \mapsto reach(\ell) \lor F$$
];  
foreach  $(\ell, \rho(V, V'), \ell') \in E$  do

**foreach** 
$$(\ell, \rho(V, V'), \ell') \in E$$
 **do**  $|$  *worklist*  $:=$  *worklist*  $\cup \{(\ell', sp(F, \rho))\};$ 

Program verification 2019

if 
$$reach(\ell_e) \neq \bot$$
 then return UNSAFE

#### else return Safe

**(9)** 

### Exercise 4.5

logical operators!

Give a condition for definite termination?

Note: We need efficient implementations of various

# Example: symbolic model checking

### Example 4.3

Consider the following example

$$0 < x < 9, i := x$$

$$x > 4,$$

$$x := x - 1, \quad \ell_1$$

$$i := i - 1$$

$$x \le 4 \land i \ne x$$

Let V = [x, i] Exercise 4.6

Init:  $reach = \lambda x. \bot$ ,  $worklist = \{(\ell_0, \top)\}$ Choose a state:  $(\ell_0, \top)$  (only choice) Update worklist:  $worklist := \emptyset$ Add successors in worklist:  $Since \neg (\top \Rightarrow reach(\ell_0))$  is sat,

Since  $\neg(\top \Rightarrow reach(\ell_0))$  is sat,  $worklist := worklist \cup \{(\ell_1, 0 < x = i < 9)\}$   $reach(\ell_0) := reach(\ell_0) \lor \top := \top$ Again choose a state:  $\{(\ell_1, 0 < x = i < 9)\}$  $Update \ worklist := \emptyset$ 

Add successors in worklist: Since  $\neg (0 < x = i < 9 \Rightarrow reach(\ell_1))$  is sat,

worklist := worklist  $\cup \{(\ell_1, 3 < x = i < 9), (\ell_e, \bot)\}$ reach $(\ell_1)$  := reach $(\ell_1) \lor 0 < x = i < 9$ 

 $reach(\ell_e) := reach(\ell_e) \lor \bot$ 

complete the run of the algorithm

### Proof generation

If the symbolic model checker terminates with the answer  $\mathrm{SAFE}$ , then it must also report a proof of the safety, which is the  $\mathit{reach}$  map.

It has implicitly computed a Hoare style proof of  $P = (V, L, \ell_0, \ell_e, E)$ .

$$(\ell, \rho(V, V'), \ell') \in E \quad \{\mathit{reach}(\ell)\} \rho(V, V') \{\mathit{reach}(\ell')\}$$

If an LTS program has been obtained from a simple language program then one may generate a Hoare style proof system.

#### Exercise 4.7

Describe the construction for the above translation

### Topic 4.3

Constraint based invariant generation



### Invariant generation using constraint solving

### **Invariant generation:** find a safe inductive invariant map I

► This is our first method that computes the fixed point automatically without resorting to some kind of enumeration

### **Templates**

Let 
$$L = \{I_0, ..., I_n, I_e\}$$
,  
Let  $V = \{x_1, ..., x_m\}$ 

We assume the following templates for each invariant in the invariant map.

$$I(I_0) = 0 \le 0$$
  
 $\forall i \in 1..n. \ I(I_i) = (p_{i1}x_1 + ... p_{im}x_m \le p_{i0})$   
 $I(I_e) = 0 \le -1$ 

 $p_{ij}$  are called parameters to the templates and they define a set of candidate invariants.

### Constraint generation

A safe inductive invariant map I must satisfy for all  $(I_i, \rho, I_{i'}) \in E$ 

$$sp(I(I_i), \rho) \Rightarrow I(I_{i'}).$$

The above condition translates to

$$\forall V, V'. (p_{i1}x_1 + \dots p_{im}x_m \leq p_{i0}) \land \rho(V, V') \Rightarrow (p_{i'1}x_1' + \dots p_{i'm}x_m' \leq p_{i'0})$$

Our goal is to find  $p_{ij}$ s such that the above constraints are satisfied. Unfortunately there is quantifier alternation in the constraints. Therefore, they are hard to solve.

### Constraint solving using Farkas lemma

If all  $\rho$ s are linear constraints then we can use Farkas lemma to turn the validity question into a "conjunctive satisfiablity question"

#### Lemma 4.1

For a rational matrix A, vectors a and b, and constant c.

$$\forall X. \ AX \leq b \Rightarrow aX \leq c \ iff$$

$$\exists \lambda \geq 0. \ \lambda^T A = a \ and \ \lambda^T b \leq c$$

### Application of farkas lemma

Consider 
$$(I_i, (AV + A'V \leq b), I_{i'}) \in E$$

After applying Farkas lemma on

$$\forall V, V'. (p_{i1}x_1 + \ldots p_{im}x_m \leq p_{i0}) \land \rho(V, V') \Rightarrow (p_{i'1}x_1' + \ldots p_{i'm}x_m' \leq p_{i'0}),$$

we obtain

$$\exists \lambda_0, \lambda. \left(\lambda_0[p_{i1}, \dots, p_{im}] + \lambda^T A\right) = 0 \wedge \lambda^T A' = [p_{i'1}, \dots, p_{i'm}] \wedge \lambda_0 p_{i0} + \lambda^T b \leq p_{i'0}$$

All the variables  $p_{ij}$ s and  $\lambda$ s are existentially quantified, which can be solved by a quadratic constraints solver.

## Example: invariant generation

#### Example 4.4

Consider the following

example

$$x := 2, y := 3$$

$$y \le 10,$$

$$x := x - 1, \bigcirc \ell_1$$
  
 $y := y + 1$ 

$$y > 10 \land x \ge 10$$

Let V = [x, y]

We assume the following invariant template at  $\ell_1$ :

We generate the following constraints for program

 $I(\ell_1) = (p_1 x + p_2 y < p_0)$ 

For  $\ell_0$  to  $\ell_1$ ,

transitions:

$$\forall \mathbf{x}', \mathbf{y}'. \ \mathbf{x}' = 2 \land \mathbf{y}' = 3 \Rightarrow (p_1 \mathbf{x}' + p_2 \mathbf{y}' \leq p_0)$$

For  $\ell_1$  to  $\ell_1$ .  $\forall x, y, x', y'$ .  $(p_1x + p_2y \le p_0) \land y \le 10 \land x' = x - 1 \land$ 

For  $\ell_1$  to  $\ell_e$ .

 $\forall x, y. (p_1x + p_2y \le p_0) \land y > 10 \land x \ge 10 \Rightarrow \bot$ 

Instructor: Ashutosh Gupta

IITB, India

 $v' = v + 1 \Rightarrow (p_1 x' + p_2 y' < p_0)$ 

### Example: invariant generation(contd.)

Now consider the second constraint:

$$\forall x, y, x', y'$$
.

$$\left( \rho_1 \mathtt{x} + \rho_2 \mathtt{y} \leq \rho_0 \right) \wedge \mathtt{y} \leq 10 \wedge \mathtt{x}' = \mathtt{x} - 1 \wedge \mathtt{y}' = \mathtt{y} + 1 \Rightarrow \left( \rho_1 \mathtt{x}' + \rho_2 \mathtt{y}' \leq \rho_0 \right)$$

Matrix view of the transition relation  $y \leq 10 \land x' = x - 1 \land y' = y + 1$ 

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ x' \\ y' \end{bmatrix} \le \begin{bmatrix} 10 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

## Example: invariant generation(contd.)

Applying farkas lemma on the constraint, we obtain

$$\left[\begin{array}{ccccccc} \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \lambda_5 \end{array}\right] \left[\begin{array}{ccccccc} p_1 & p_2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 \end{array}\right] = \left[\begin{array}{cccccc} 0 & 0 & p_1 & p_2 \end{array}\right]$$

### Exercise 4.8

Apply farkas lemma on the other two implications  $\forall x', y'. \ x' = 2 \land y' = 3 \Rightarrow (p_1x' + p_2y' \le p_0)$ 

#### Does this method work?

- Quadratic constraint solving does not scale
- For small tricky problems, this method may prove to be useful

Topic 4.4

**Problems** 



# End of Lecture 4

