Program verification 2019

Lecture 4: Understand abstraction

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-01-15

Topic 4.1

Fixed point computation and Abstraction

Reachability as fixed point equation Consider program $P = (V, L, \ell_0, \ell_e, E)$

Let X_ℓ be a variable representing the reachable valuations at location $\ell \in L$

We may compute reachability using sp via the following fixed point equation

$$egin{aligned} X_{\ell_0} &= op \ \forall \ell' \in L \setminus \{\ell_0\}. \ X_{\ell'} &= \bigvee_{(\ell,
ho,\ell') \in E} sp(X_\ell,
ho) \end{aligned}$$

We will use the following fixed point equation that has same fixed points as above.

$$X_{\ell_0} = \top$$

$$\forall \ell' \in L \setminus \{\ell_0\}. \ X_{\ell'} = X_{\ell'} \lor \bigvee_{\substack{(\ell,\rho,\ell') \in E}} sp(X_{\ell},\rho)$$

Note: For now, we are ignoring the constraints posed by the error location.

 $\Theta \oplus \Theta$

Trogram vernication 2019 instructor. Ashutosh Gupta in D, ind		Program verification 2019	Instructor: Ashutosh Gupta	IITB, India
---	--	---------------------------	----------------------------	-------------

Fixed point computation

Initial assignment to variables and iteratively compute the fixed point

Let $X_{\ell}^{i} \triangleq$ value of X_{ℓ} at *i*th iteration.

In our setting, initially: $X_{\ell_0}^0 \triangleq \top$ and $X_{\ell}^0 \triangleq \bot$ for each $\ell \neq \ell_0$ and at each iteration

$$egin{aligned} X^{k+1}_{\ell_0} &= op \ orall \ell' \in L \setminus \{\ell_0\}. \ X^{k+1}_{\ell'} &= X^k_{\ell'} \lor igvee_{(\ell,
ho,\ell') \in E} sp(X^k_\ell,
ho) \end{aligned}$$

If $\forall \ell$. $X_{\ell}^{k} = X_{\ell}^{k+1}$, then we say that the iterations have converged at iteration k and we have computed the fixed point.

Example: diverging analysis with sp

Example 4.1

Consider program:

x := 0 $x + +; \bigcirc \ell_1$ x < 0 ℓ_e

Fixed point equations:

$$X_{\ell_0} = \top$$

 $X_{\ell_1} = sp(X_{\ell_0}, x' = 0) \lor sp(X_{\ell_1}, x' = x + 1)$
 $X_{\ell_e} = sp(X_{\ell_1}, x < 0 \land x' = x)$

Iterates:

$$X_{\ell_0}^0 := \top, X_{\ell_1}^0 := \bot, X_{\ell_e}^0 := \bot$$

 $X_{\ell_0}^1 := \top, X_{\ell_1}^1 := (x = 0), X_{\ell_e}^1 := \bot$
 $X_{\ell_1}^2 := \top$
 $X_{\ell_1}^2 := X_{\ell_1}^1 \lor sp(X_{\ell_1}^1, x' = x + 1) \lor sp(X_{\ell_0}^1, x' = 0)$
 $:= (x = 0) \lor sp(x = 0, x' = x + 1) \lor sp(\top, x' = 0)$
 $:= (x = 0 \lor x = 1 \lor x = 0) := (0 \le x \le 1)$
 $X_{\ell_e}^2 := sp(X_{\ell_1}^1, x < 0 \land x' = x)$
 $:= sp(x = 0, x < 0 \land x' = x) := \bot$

Instructor: Ashutosh Gupta

Example: diverging analysis with *sp*(contd.)

lterates(contd.):

$$egin{aligned} X^3_{\ell_0} &:= op, X^3_{\ell_1} := (0 \leq x \leq 2), X^3_{\ell_e} &:= ot\ &: \ &: \ &X^n_{\ell_0} &:= op, X^n_{\ell_1} := (0 \leq x \leq n-1), X^n_{\ell_e} &:= ot\ &... \ &...$$

How to compute fixed point effectively?

Abstract post $sp^{\#}$

Now we introduce the key method of verification

Let us define

 Θ

$$\textit{sp}^{\#}: \Sigma(V) \times \Sigma(V,V') \to \Sigma(V)$$

Abstract post must satisfy the following condition over labels of P

$$sp(F, \rho) \Rightarrow sp^{\#}(F, \rho)$$

It is up to us how we choose $sp^{\#}$ that satisfies the above condition

Important: We have defined $sp^{\#}$ using formulas. However, any data type (domain) can work that is capable of representing set of states.

Abstract Fixed point

Replace sp by $sp^{\#}$ for faster convergence

initially: $X_{\ell_0}^0 \triangleq \top$ and $X_{\ell}^0 \triangleq \bot$ for each $\ell \neq \ell_0$ and at each iteration

$$\begin{aligned} X_{\ell_0}^{k+1} &= \top \\ \forall \ell' \in L \setminus \{\ell_0\}. \ X_{\ell'}^{k+1} &= X_{\ell'}^k \lor \bigvee_{(\ell,\rho,\ell') \in E} sp^{\#}(X_{\ell}^k,\rho) \end{aligned}$$

After convergence, X_{ℓ} will be a superset of reachable states at ℓ .

Definition alert: Partial order and poset

Definition 4.1

On a set X, $\leq \subseteq X \times X$ is a partial order if

- reflexive: $\Delta_X \subseteq \leq$
- anti-symmetric: $\leq \cap \leq^{-1} \subseteq \Delta_X$
- transitive: $\leq \circ \leq \subseteq \leq$

We will use $x \leq y$ to denote $(x, y) \in \leq$ Let $x < y \triangleq (x \leq y \land x \neq y)$

Definition 4.2 A poset (X, \leq) is a set equipped with partial order \leq on X

Example 4.2

 (\mathbb{N},\leq)

Topic 4.2

Abstract interpretation

Abstract interpretation

Concrete objects of analysis or domain — C = sets of valuations ⊆ Q^V
 not all sets are concisely representable in computer
 too (infinitely) many of them

- Abstract domain only simple to represent sets $D \subseteq C$
 - D should allow efficient algorithms for desired operations
 - far fewer, but possibly infinitely many
 - Sets in $C \setminus D$ are not precisely representable in D

How to use D to capture semantics of a program?

Abstracting and concretization function

This is not the most general definition! Any partial order can replace \supseteq .

Definition 4.3

An abstraction function $\alpha : C \to D$ maps each set $c \in C$ to $\alpha(c) \supseteq c$.

Definition 4.4 A concretization function $\gamma : D \to C$ maps each set $d \in D$ to d.

The above definitions become more meaningful, if we think of D as the representation of sets on a computer instead of the sets themselves.

Lemma 4.1 D contains \mathbb{Q}^V

Example: abstraction - intervals

Example 4.3

Let us assume $V = \{x\}$

Consider $D = \{\perp, \top\} \cup \{[a, b] | a, b \in \mathbb{Q}\}.$

Ordering among elements of D are defined as follows: $\perp \sqsubseteq [a, b] \sqsubseteq \top \text{ and } [a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \le a_1 \land b_1 \le b_2$

Let $\alpha(c) \triangleq [inf(c), sup(c)]$ and $\gamma([a, b]) \triangleq [a, b]$

•
$$\alpha(\{0,3,5\}) = [0,5]$$

• $\alpha((0,3)) = [0,3]$
• $\alpha([0,3] \cup [5,6]) = [0,6]$

•
$$\alpha(\{1/x|x \ge 1\}) = [0,1]$$

Minimal abstraction principle

It is always better to choose smaller abstraction.

Choose $\alpha(c)$ as small as possible, therefore more precise abstraction

Therefore, if $d \in D$ then $\alpha(d) = d$ and α must be monotonic

There may be multiple minimal abstractions.

Even worse, there may be no minimal approximation, *e. g.*, approximating a circle with a polytope (In this lecture, we assume minimal abstractions exist.)

Properties of D, α , and γ

Now on we will ignore that D is set of sets. We assume D is a topped poset

 (D, \sqsubseteq, \top)

We always choose D, $\alpha,$ and γ such that the above galois connection holds.

Topic 4.3

Examples of abstraction

Sign abstraction

Sign abstraction $C = \mathfrak{p}(\mathbb{Q})$ $D = \{+, -, 0, \bot, \top\}$ $\alpha(p) = + \text{ if } \min(p) > 0$ $\alpha(p) = - \text{ if } \max(p) < 0$ $\alpha(0) = 0$ $\alpha(\emptyset) = \bot$ $\alpha(p) = \top, \text{ otherwise}$

Congruence abstraction

Congruence abstraction $C = \mathbb{Z}$ $D = \{0, \dots, n-1\}$ $\alpha(c) = c \mod n$

Cartesian predicate abstraction

Cartesian predicate abstraction is defined by a set of predicates $P = \{p_1, \dots, p_n\}$ $C = \mathfrak{p}(\mathbb{Q}^{|V|})$ $D = \bot \cup \mathfrak{p}(P) // \emptyset \text{ represents } \top$ $\bot \sqsubseteq S_1 \sqsubseteq S_2 \text{ if } S_2 \subseteq S_1$ $\alpha(c) = \{p \in P | c \Rightarrow p\}$ $\gamma(S) = \bigwedge S$

Example:

$$\begin{split} &V = \{\mathbf{x}, \mathbf{y}\} \\ &P = \{\mathbf{x} \leq 1, -\mathbf{x} - \mathbf{y} \leq -1, \mathbf{y} \leq 5\} \\ &\alpha(\{(0,0)\}) = \{\mathbf{x} \leq 1, \mathbf{y} \leq 5\} \\ &\alpha((\mathbf{x}-1)^2 + (\mathbf{y}-3)^2 = 1) = \{-\mathbf{x} - \mathbf{y} \leq -1, \mathbf{y} \leq 5\} \end{split}$$

Boolean predicate abstraction

Boolean predicate abstraction is also defined by a set of predicates $P = \{p_1, \dots, p_n\}$

 $C = \mathfrak{p}(\mathbb{Q}^{|V|})$ D = boolean formulas over predicates in P $F_1 \sqsubseteq F_2 \text{ if } F_1 \Rightarrow F_2$ $\alpha(c) = \text{strongest boolean formula over } P \text{ that contains } c$ $\gamma(F) = F$

Example:

$$V = \{x, y\}$$

$$P = \{x \le 1, -x - y \le -1, y \le 5\}$$

$$\alpha(-2x - y \le -2) = -x - y \le -1 \lor \neg (x \le 1)$$

End of Lecture 4

