
cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 1

Program verification 2019

Lecture 4: Understand abstraction

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-01-15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 2

Topic 4.1

Fixed point computation and Abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 3

Reachability as fixed point equation
Consider program P = (V , L, `0, `e ,E)

Let X` be a variable representing the reachable valuations at location ` ∈ L

We may compute reachability using sp via the following fixed point equation

X`0 = >

∀`′ ∈ L \ {`0}. X`′ =
∨

(`,ρ,`′)∈E

sp(X`, ρ)

We will use the following fixed point equation that has same fixed points as
above.

X`0 = >

∀`′ ∈ L \ {`0}. X`′ = X`′∨
∨

(`,ρ,`′)∈E

sp(X`, ρ)

Note: For now, we are ignoring the constraints posed by the error location.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 4

Fixed point computation

Initial assignment to variables and iteratively compute the fixed point

Let X i
` , value of X` at ith iteration.

In our setting, initially: X 0
`0
, > and X 0

` , ⊥ for each ` 6= `0

and at each iteration

X k+1
`0

= >

∀`′ ∈ L \ {`0}. X k+1
`′ = X k

`′ ∨
∨

(`,ρ,`′)∈E

sp(X k
` , ρ)

If ∀`. X k
` = X k+1

` , then we say that the iterations have converged at iteration
k and we have computed the fixed point.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 5

Example: diverging analysis with sp

Example 4.1

Consider program:

`0

`1

`e

x := 0

x < 0

x + +;

Fixed point equations:
X`0 = >
X`1 = sp(X`0 , x

′ = 0) ∨ sp(X`1 , x
′ = x + 1)

X`e = sp(X`1 , x < 0 ∧ x ′ = x)

Iterates:
X 0
`0

:= >,X 0
`1

:= ⊥,X 0
`e

:= ⊥

X 1
`0

:= >,X 1
`1

:= (x = 0),X 1
`e

:= ⊥

X 2
`0

:= >
X 2
`1

:= X 1
`1
∨ sp(X 1

`1
, x ′ = x + 1) ∨ sp(X 1

`0
, x ′ = 0)

:= (x = 0)∨ sp(x = 0, x ′ = x + 1)∨ sp(>, x ′ = 0)
:= (x = 0 ∨ x = 1 ∨ x = 0) := (0 ≤ x ≤ 1)

X 2
`e

:= sp(X 1
`1
, x < 0 ∧ x ′ = x)

:= sp(x = 0, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 6

Example: diverging analysis with sp(contd.)

`0

`1

`e

x := 0

x < 0

x + +;

Iterates(contd.):

X 3
`0

:= >,X 3
`1

:= (0 ≤ x ≤ 2),X 3
`e

:= ⊥
...
X n
`0

:= >,X n
`1

:= (0 ≤ x ≤ n − 1),X n
`e

:= ⊥
...will never converge

How to compute fixed point effectively?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 7

Abstract post sp#

Now we introduce the key method of
verification

Let us define
sp# : Σ(V)× Σ(V ,V ′)→ Σ(V)

Abstract post must satisfy the following condition over labels of P

sp(F , ρ)⇒ sp#(F , ρ)

It is up to us how we choose sp# that satisfies the above condition

Important: We have defined sp# using formulas. However, any data type
(domain) can work that is capable of representing set of states.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 8

Abstract Fixed point

Replace sp by sp# for faster convergence

initially: X 0
`0
, > and X 0

` , ⊥ for each ` 6= `0

and at each iteration

X k+1
`0

= >

∀`′ ∈ L \ {`0}. X k+1
`′ = X k

`′ ∨
∨

(`,ρ,`′)∈E

sp#(X k
` , ρ)

After convergence, X` will be a superset of reachable states at `.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 9

Definition alert: Partial order and poset

Definition 4.1
On a set X , ≤ ⊆ X × X is a partial order if

I reflexive: ∆X ⊆ ≤
I anti-symmetric: ≤ ∩ ≤−1⊆ ∆X

I transitive: ≤ ◦ ≤ ⊆ ≤

We will use x ≤ y to denote (x , y) ∈ ≤
Let x < y , (x ≤ y ∧ x 6= y)

Definition 4.2
A poset (X ,≤) is a set equipped with partial order ≤ on X

Example 4.2

(N,≤)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 10

Topic 4.2

Abstract interpretation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 11

Abstract interpretation

I Concrete objects of analysis or domain — C = sets of valuations ⊆ QV

I not all sets are concisely representable in computer
I too (infinitely) many of them

I Abstract domain — only simple to represent sets D ⊆ C
I D should allow efficient algorithms for desired operations
I far fewer, but possibly infinitely many
I Sets in C \ D are not precisely representable in D

How to use D to capture semantics of a program?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 12

Abstracting and concretization function

Definition 4.3
An abstraction function α : C → D maps each set c ∈ C to α(c) ⊇ c.

Definition 4.4
A concretization function γ : D → C maps each set d ∈ D to d.

The above definitions become more meaningful, if we think of D as the
representation of sets on a computer instead of the sets themselves.

Lemma 4.1
D contains QV

This is not the most general definition!
Any partial order can replace ⊇.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 13

Example: abstraction – intervals

Example 4.3

Let us assume V = {x}

Consider D = {⊥,>} ∪ {[a, b]|a, b ∈ Q}.

Ordering among elements of D are defined as follows:
⊥ v [a, b] v > and [a1, b1] v [a2, b2]⇔ a2 ≤ a1 ∧ b1 ≤ b2

Let α(c) , [inf (c), sup(c)] and γ([a, b]) , [a, b]

I α({0, 3, 5}) = [0, 5]

I α((0, 3)) =[0, 3]

I α([0, 3] ∪ [5, 6]) =[0, 6]

I α({1/x |x ≥ 1}) =[0, 1]

D forms a lattice.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 14

Minimal abstraction principle

It is always better to choose smaller abstraction.

Choose α(c) as small as possible, therefore more precise abstraction

Therefore, if d ∈ D then α(d) = d and α must be monotonic

There may be multiple minimal abstractions.

Even worse, there may be no minimal approximation,
e. g., approximating a circle with a polytope
(In this lecture, we assume minimal abstractions exist.)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 15

Properties of D, α, and γ

Now on we will ignore that D is set of sets. We assume D is a topped poset

(D,v,>)

I α is monotone (due to minimality principle)

I γ is monotone

I c ⊆ γ◦α(c)

I α◦γ(d) v d (due to minimality principle)

Therefore,
(C ,⊆) −−−→←−−−α

γ
(D,v)

We always choose D, α, and γ such that the above galois connection holds.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 16

Topic 4.3

Examples of abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 17

Sign abstraction

Sign abstraction
C = p(Q)
D = {+,−, 0,⊥,>}
α(p) = + if min(p) > 0
α(p) = − if max(p) < 0
α(0) = 0
α(∅) = ⊥
α(p) = >, otherwise

>

0+ −

⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 18

Congruence abstraction

Congruence abstraction
C = Z
D = {0, . . . , n − 1}
α(c) = c mod n

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 19

Cartesian predicate abstraction

Cartesian predicate abstraction is defined by a set of predicates
P = {p1, . . . , pn}
C = p(Q|V |)
D = ⊥ ∪ p(P) // ∅ represents >
⊥ v S1 v S2 if S2 ⊆ S1

α(c) = {p ∈ P|c ⇒ p}
γ(S) =

∧
S

Example:
V = {x, y}
P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}
α({(0, 0)}) = {x ≤ 1, y ≤ 5}
α((x− 1)2 + (y− 3)2 = 1) ={−x− y ≤ −1, y ≤ 5}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 20

Boolean predicate abstraction

Boolean predicate abstraction is also defined by a set of predicates
P = {p1, . . . , pn}

C = p(Q|V |)
D = boolean formulas over predicates in P
F1 v F2 if F1 ⇒ F2

α(c) = strongest boolean formula over P that contains c
γ(F) = F

Example:
V = {x, y}
P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}
α(−2x − y ≤ −2) =−x− y ≤ −1 ∨ ¬(x ≤ 1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Program verification 2019 Instructor: Ashutosh Gupta IITB, India 21

End of Lecture 4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Fixed point computation and Abstraction
	Abstract interpretation
	Examples of abstraction

