Automated Reasoning 2020

Lecture 4: Encoding into reasoning problems

Instructor: Ashutosh Gupta
IITB, India

Compile date: 2020-08-29

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

Topic 4.1

/3 solver

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Solver basic interface

» Input : formula
» Output: sat/unsat

If satisfiable, we may ask for a satisfying assignment.

Exercise 4.1
What can we ask from a solver in case of unsatisfiability?

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Z3: SMT solver

» Written in C++
» Provides APl in C++ and Python
» We will initially use python interface for quick ramp up

» Later classes we will switch to C4++ interface

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Installing Z3 (Ubuntu-18.04)

$sudo apt-get install z3

Not tested on 20.04

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Locally Installing a version of Z3 (Linux)

Let us install z3-4.7.1. You may choose another version.
» Download

https://github.com/Z3Prover/z3/releases/download/z3-4.7.1/2z3-4.7.1-x64-ubuntu-16.04.zip

» Unzip the file in some folder. Say

/path/z3-4.7.1-x64-ubuntu-16.04/

» Update the following environment variables

$export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/z3-4.7.1-x64-ubuntu-16.04/bin
$export PYTHONPATH=$PYTHONPATH:/path/z3-4.7.1-x64-ubuntu-16.04/bin/python

» After the setup the following call should throw no error

$python3 /path/z3-4.7.1-x64-ubuntu-16.04/bin/python/example.py

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://github.com/Z3Prover/z3/releases/download/z3-4.7.1/z3-4.7.1-x64-ubuntu-16.04.zip

Topic 4.2

Using solver

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Steps of using Z3 via python interface

from z3 import =

pl = Bool("pl")
p2 = Bool("p2")

phi = 0r(p1, p2)
print (phi)

s = Solver ()
s.add(phi)
r = s.check()
if r == sat:

print ("sat")
else:

print ("unsat")

#

#
#

load z3 library

declare a Boolean variable
construct the formula
printing the formula
allocate solver

add formula to the solver
check satisfiability

save the script test.py
run \$python3 test.py

@O0

Automated Reasoning 2020

Instructor: Ashutosh Gupta

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Get a model

r = s.check()
if r == sat:
m = s.model () # read model
print (m) # print model
else:
print ()
Exercise 4.2

What happens if we run m = s.model() in the unsat case?

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Solve and print model

from z3 import =*

packaging solving and model printing
def solve(phi):
s = Solver ()
s.add (phi)
r = s.check()
if r == sat:
m = s.model()
print (m)
else:
print ()

we will use this function in later slides

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Pointer and variable

There is a distinction between the Python variable name and the propositional variable it holds.

from z3 import * # load z3 library
x = Bool() # creates Propositional variable y
zZ = X # python pointer z also holds variable y

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise: encoding Boolean circuit

Exercise 4.3
Using Z3, find the input values of A, B, and C such that output D is 1.

AN
)

oy}
>

We know you can do it! Please do not shout the answer. Please make computer find it.

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Design of solvers: context vs. solver

Any complex software usually has a context object.

The context consists of a formula store containing the constructed formulas.

Z3 Python interface instantiates a default context. Therefore, we do not see it explicitly.
A Solver is a solving instance. There can be multiple solvers in a context.

The Solver solves only the added formula.

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Solving rational(real) arithmetic

x = Real() For linear arithmetic
y = Real() Real == rational
phi = And(x + y > 5, x > 1, y > 1)

solve(phi)

@O0 Automated Reasoning 2020

Instructor: Ashutosh Gupta

IITB, India

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Solving integer arithmetic

b Int()
y Int()
phi = And(x + y > 5, x > 1,
solve(phi)

y>1)

@O0

Automated Reasoning 2020

Instructor: Ashutosh Gupta

IITB, India

15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise: bounded model checking

Exercise 4.4
Using Z3, find the inputs x and y such that the assert fails.

int foo(int x, int y) {
int z = 3*%xx + 2%y - 3;
ifCy >0)
assert(z !'= 0);

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

16

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Solving bit precise

i
]

BitVec (,32)
BitVec(,32)

<
]

phi = And(x + y > 5, x > 1, y > 1)

solve (phi)

» Bit lengths must match in an operation

» Largely solved by bit blasting

» Far more expensive to solve!

{converting Bit-vector formulas into Boolean formulas

by replacing vectors by bits and operation by circuits.

J

[RIORIE) Automated Reasoning 2020

Instructor: Ashutosh Gupta IITB, India

17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise : observe overflow behavior

Exercise 4.5
Give a bit-vector formula that is satisfiable due to overflow of addition, but in infinite precision it
is unsatisfiable.

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Uninterpreted functions

x = Int()

y = Int()

declaring Int -> Int function

h = Function(, IntSort(), IntSort())

phi = And(h(x) > 5, h(y) < 2)

solve (phi)

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise:

Exercise 4.6
Give a satisfying model of the following formula

g(x,y) <0ngly,x) >0y =x

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Uninterpreted sorts

u = DeclareSort() # declaring new sort
¢ = Const(, u) # declaring a constant of the sort
f = Function(, U, u) # declaring a function of the sort

declaring a predicate of the sort
= Function(, u, BoolSort ())

jav)

phi = And(f(c) == ¢, P(C f(c)), Not(P(c)))

solve (phi)

Exercise 4.7
Get model after dropping the third atom. Interpret the model.

[Commentary: Hint: the solver also chooses domains for the uninterpreted sorts, and the models of the functions are presented in terms of the domains.

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Quantifiers

u = DeclareSort ()

H = Function(, u, BoolSort())
M = Function(, u, BoolSort())
x = Const(, u)

all_mort = ForAll(x, Implies(H(x), M(x)))

s Const (, ou)
thm = Implies(And(H(s), all_mort), M(s))

solve(Not(thm))

[RIORIE)

Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise: solving quantified formulas

Exercise 4.8
Prove/disprove if the following statement is valid.

There is someone such that if the one drinks, then everyone drinks

Exercise 4.9
Write a formula that only accepts infinite models. Encode the formula in Z3 and get model.

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Formula handling

a Bool ()
b Bool()
ab = And(a, b)

accessing sub-formulas
print (ab.arg(0))
print (ab.arg (1))

accessing the symbol at the head
ab_decl ab.decl ()
name = ab_decl.name ()
if name ==
print ()

@O0

Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

24

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Quantified formula handling

u = DeclareSort ()

H = Function(, u, BoolSort())
M = Function (, u, BoolSort())
x = Const(, u o)

y = Const(, u)

all_mort = ForAll(x, Implies(H(x), M(x)))
print (all_mort.body (D)

Output: Implies (Human(Var (0)), Mortal(Var (0)))

Var (0) is FOL variable

Naming quantified variables using DeBruijn index

alt = ForAll(x, Exists(y, Implies(H(x), M(y))))
print (alt.body () .body (D)
Output: Implies (Human(Var (1)), Mortal(Var(0)))

@O0

Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 25

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 4.3

SMT?2 format

@O0

Automated Reasoning 2020

Instructor: Ashutosh Gupta

IITB, India

26

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

API vs Input language

» Each solver has their own API

» We need a common input format for

» interoperability and
» database of problems

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

27

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Standard format for SMT solvers

SMT?2 is a standard input format for SMT solvers.

http://smtlib.cs.uiowa.edu/language.shtml

» Formulas are written in prefix notation (why?)
(= (x 2 x) (+y2))

» There is a simple type system. Similar to Z3 API.

» Solver interacts like a stack

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

28

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://smtlib.cs.uiowa.edu/language.shtml

File format

An SMT2 file has five parts

ok =

Preamble declarations
Sort declarations
Variable declarations
Asserting formulas

Solving commands

@O0

Automated Reasoning 2020

Instructor: Ashutosh Gupta

IITB, India

29

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Preamble declaration

» Set configurations of the solvers
(set-logic QF_UFLIA) ;setting Theory/Logic

(set-option :produce-proofs true) ;enable proof generation if input is unsat

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 30

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Sort declarations

» Declare new sorts of the variables

(declare-sort symbol numeral)

Example 4.1
(declare-sort U 0) ; new sort with no parameters
(declare-sort Arr 2) ; new sort with two parameters

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

31

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Variable declarations

» Declare variables and functions that may be used in the formulas

(declare-fun symbol (sort*) sort)

Example 4.2
(declare-fun x () Int) ;declare variable
(declare-fun f (Int) Int) ;declare a function with one argument
(declare-fun g (Int Int) Int) ;declare a function with two arguments
(declare-fun h ((Arr U Int) Int) Int);declare a function with two argument

~-
(Sorts with parameters j

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 32

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Asserting formulas

» Formulas are asserted in a sequence

Example 4.3

(assert (>= (*x 2 x) (+y 2)))
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

36|

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Commands

» Commands are the actions that solver needs to do

Example 4.4

(check-sat) ; checks if the conjunction of asserted formula is sat
(get-model) ; returns a model if the formulas are sat

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

34

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Stack interaction

The standard is designed to be interactive
» Asserted formulas are pushed in the stack of the solver
» (push) command places marker on the stack

» (pop) removes the formulas upto the last marker
Example 4.5
(push)

(assert (= x y))
(check-sat)

(pop)

After the pop the solver state goes back to the last push. Useful in interactive use of solver.

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

35

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Full example

(set-logic QF_UFLIA)

(set-option

(declare-fun
(declare-fun
(declare-fun
(declare-fun
(declare-fun

:produce-proofs true)

x () Int)

y (O Int)

z () Int)

f (Int) Int)

g (Int Int) Int)

(assert (0= (x 2 x) (+y 2)))
(assert (< (£ x) (g x x)))
(assert (> (f y) (g x x)))

(check-sat)
(get-model)
(push)

(assert (= x y))

(check-sat)

(pop)

(exit)

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 36

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Demo

http://rised4fun.com/z3

[RIORIE)

Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

37

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://rise4fun.com/z3

Topic 4.4

Problems

@O0

Automated Reasoning 2020

Instructor: Ashutosh Gupta

IITB, India

38

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise : Python programming

Exercise 4.10

Write a Python program that generates a random graph in a file edges.txt for n nodes and m
edges, which are given as command line options.

Please store edges in edges.txt as the following sequence of tuples

10,12

30,50

Exercise 4.11
Write a program that reads a directed graph from edges.txt and finds the number of strongly
connected components in the graph

Exercise 4.12
Write a program that reads a directed graph from edges.txt and finds the cliques of size k,
which is given as a command line option.

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 39

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Integer vs. Reals

Exercise 4.13
Consider the following constraints

IX—y>2AN3y—z2>23A3>x+y

Solve the above constraints using SMT solver under the following theories

> Reals (QF.LRA)
> Int (QF-LIA)

40

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Proving theorems

Exercise 4.14
Prove/disprove the following theorems using a solver

» Sky is blue. Space is black. Therefore sky and space are blue or black.

» Hammer and chainsaw are professional tools. Professional tools and vehicles are rugged.
Therefore, hammers are rugged.

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

a1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Exercise: translation validation

Exercise 4.15
Show that the following two circuits are equivalent.

L2

L1 L5
©

L3

_’@ "@"’@ _’_>®_) (©) =

T o

Ls are latches, circles are Boolean circuts, and Ms are multiplexers.

Source: http://www.decision-procedures.org/slides/uf.pdf

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Write a function: compute linear coefficient

Exercise 4.16
Find coefficient of each variable in a linear term. If the term is non-linear, throw an exception.

Examples:
X — 2x + y + 4 should return [4,—1, 1] if variables are ordered [x, y|.

x — x + 4y — 2(2y) should return [0, 0, 0] if variables are ordered [x, y].

(x + 1) x y should throw an exception

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

43

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Write a function: find positive variables

Exercise 4.17

Find the set of Boolean variables that occur only positively in a propositional logic formula.

An occurrence of a variable is positive if there are even number of negations from the occurrence

to the root of the formula.

Examples:

Only q occurs positively in p A —(—=q A p).
p occurs positively in =—p.

p does not occur positively in —p.

p and q occur positively in (pV =r) A (rV q).

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta

IITB, India

44

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Write a function: find quantifier alternation depth

Exercise 4.18
Compute quantifier alternations depth of a sentence.

Maximum number of quantifier type switches is any path from an atom to the root.

Examples: quantifier alternations depth of
Vx. 3y. E(x,y) is 1.

Vx.3y.Vz. E(x,y,z) is 2.
Vx. Yy. E(x,y) is 0.
Vx. ((El_y H(X,y)) = G(X)) is 0. (3 under negation is V and vice-versa)

Vx. ((3y. H(x,y))= 3z. G(x, z)) is 1.

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

45

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Write a function: find unrelated constraints

Exercise 4.19
Consider a formula F consists of only a conjunction of atoms. Find the subsets of F that have

disjoint set of uninterpreted symbols.
Examples:

x =y Ax =z A P(u) has two unrelated subsets {x = y,x =z} and {P(u)}

x+y=3Az+u>10 has two unrelated subsets {x + y = 3} and {z + u > 10}, while they
have a common interpreted symbol +.

[RIORIE) Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

46

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Write a function: find maximum occurring symbol

Exercise 4.20
Consider a formula F. Find the uninterpreted symbol in F that occurs most often.

Examples:
x occurs most often in g(g(x, x), g(x, x)).
f occurs most often in f(x,y) = f(x, b) A f(2,3) > 10.

D occurs most Often in ElX(D(X) = D(X + 1)) . quantified variables are not counted.

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

47

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Write a function: find common symbols

Exercise 4.21

Consider formulas F1 and F,. Find uninterpreted symbols the occur both in F1 and F5.

Examples:
{x, f} occurs f(x) > 3 and f(y) < x, but not y
{f} occurs f(x) > 3 and Vx.f(x) >y, but not x and y.

{f, X} occurs f(X) > 3 and X > 20 \/ va(X) > y quantified variables are not counted.

@O0 Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India

48

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

End of Lecture 4

[RIORIE)

Automated Reasoning 2020

Instructor: Ashutosh Gupta

IITB, India

49

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Z3 solver
	Using solver
	SMT2 format
	Problems

