
cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 1

Automated Reasoning 2020

Lecture 4: Encoding into reasoning problems

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-08-29

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 2

Topic 4.1

Z3 solver

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 3

Solver basic interface

I Input : formula

I Output: sat/unsat

If satisfiable, we may ask for a satisfying assignment.

Exercise 4.1
What can we ask from a solver in case of unsatisfiability?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 4

Z3: SMT solver

I Written in C++

I Provides API in C++ and Python

I We will initially use python interface for quick ramp up

I Later classes we will switch to C++ interface

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 5

Installing Z3 (Ubuntu-18.04)

$sudo apt-get install z3

Not tested on 20.04

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 6

Locally Installing a version of Z3 (Linux)

Let us install z3-4.7.1 . You may choose another version.

I Download

https://github.com/Z3Prover/z3/releases/download/z3-4.7.1/z3-4.7.1-x64-ubuntu-16.04.zip

I Unzip the file in some folder. Say

/path/z3-4.7.1-x64-ubuntu-16.04/

I Update the following environment variables

$export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/z3-4.7.1-x64-ubuntu-16.04/bin

$export PYTHONPATH=$PYTHONPATH:/path/z3-4.7.1-x64-ubuntu-16.04/bin/python

I After the setup the following call should throw no error

$python3 /path/z3-4.7.1-x64-ubuntu-16.04/bin/python/example.py

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://github.com/Z3Prover/z3/releases/download/z3-4.7.1/z3-4.7.1-x64-ubuntu-16.04.zip

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 7

Topic 4.2

Using solver

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 8

Steps of using Z3 via python interface

from z3 import * # load z3 library

p1 = Bool("p1") # declare a Boolean variable

p2 = Bool("p2")

phi = Or(p1 , p2) # construct the formula

print(phi) # printing the formula

s = Solver () # allocate solver

s.add(phi) # add formula to the solver

r = s.check () # check satisfiability

if r == sat:

print("sat")

else:

print("unsat") # save the script test.py

run \$python3 test.py

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 9

Get a model

r = s.check ()

if r == sat:

m = s.model () # read model

print(m) # print model

else:

print("unsat")

Exercise 4.2
What happens if we run m = s.model() in the unsat case?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 10

Solve and print model

from z3 import *

packaging solving and model printing

def solve(phi):

s = Solver ()

s.add(phi)

r = s.check ()

if r == sat:

m = s.model ()

print(m)

else:

print("unsat")

we will use this function in later slides

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 11

Pointer and variable

There is a distinction between the Python variable name and the propositional variable it holds.

from z3 import * # load z3 library

x = Bool("y") # creates Propositional variable y

z = x # python pointer z also holds variable y

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 12

Exercise: encoding Boolean circuit

Exercise 4.3
Using Z3, find the input values of A, B, and C such that output D is 1.

A

B

C

D

We know you can do it! Please do not shout the answer. Please make computer find it.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 13

Design of solvers: context vs. solver

Any complex software usually has a context object.

The context consists of a formula store containing the constructed formulas.

Z3 Python interface instantiates a default context. Therefore, we do not see it explicitly.

A Solver is a solving instance. There can be multiple solvers in a context.

The Solver solves only the added formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 14

Solving rational(real) arithmetic

x = Real(’x’)

y = Real(’y’)

phi = And(x + y > 5, x > 1, y > 1)

solve(phi)

For linear arithmetic
Real == rational

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 15

Solving integer arithmetic

x = Int(’x’)

y = Int(’y’)

phi = And(x + y > 5, x > 1, y > 1)

solve(phi)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 16

Exercise: bounded model checking

Exercise 4.4
Using Z3, find the inputs x and y such that the assert fails.

int foo(int x, int y) {

int z = 3*x + 2*y - 3;

if(y > 0)

assert(z != 0);

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 17

Solving bit precise

x = BitVec(’x’ ,32) # declare name and bit length

y = BitVec(’y’ ,32)

phi = And(x + y > 5, x > 1, y > 1)

solve(phi)

I Bit lengths must match in an operation

I Largely solved by bit blasting

I Far more expensive to solve!

converting Bit-vector formulas into Boolean formulas
by replacing vectors by bits and operation by circuits.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 18

Exercise : observe overflow behavior

Exercise 4.5
Give a bit-vector formula that is satisfiable due to overflow of addition, but in infinite precision it
is unsatisfiable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 19

Uninterpreted functions

x = Int(’x’)

y = Int(’y’)

declaring Int -> Int function

h = Function(’h’, IntSort(), IntSort ())

phi = And(h(x) > 5, h(y) < 2)

solve(phi)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 20

Exercise:

Exercise 4.6
Give a satisfying model of the following formula

g(x , y) < 0 ∧ g(y , x) > 0 ∧ y = x

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 21

Uninterpreted sorts

u = DeclareSort(’U’) # declaring new sort

c = Const(’c’, u) # declaring a constant of the sort

f = Function(’f’, u, u) # declaring a function of the sort

declaring a predicate of the sort

P = Function(’P’, u, BoolSort ())

phi = And(f(c) == c, P(f(c)), Not(P(c)))

solve(phi)

Exercise 4.7
Get model after dropping the third atom. Interpret the model.
Commentary: Hint: the solver also chooses domains for the uninterpreted sorts, and the models of the functions are presented in terms of the domains.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 22

Quantifiers

u = DeclareSort(’U’)

H = Function(’Human ’, u, BoolSort ())

M = Function(’Mortal ’, u, BoolSort ())

Humans are mortals

x = Const(’x’, u)

all_mort = ForAll(x, Implies(H(x), M(x)))

s = Const(’Socrates ’, u)

thm = Implies(And(H(s), all_mort), M(s))

solve(Not(thm)) # negation of a valid theorem

is unsatisfiable

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 23

Exercise: solving quantified formulas

Exercise 4.8
Prove/disprove if the following statement is valid.

There is someone such that if the one drinks, then everyone drinks

Exercise 4.9
Write a formula that only accepts infinite models. Encode the formula in Z3 and get model.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 24

Formula handling

a = Bool(’a’)

b = Bool(’b’)

ab = And(a, b)

accessing sub -formulas

print(ab.arg (0))

print(ab.arg (1))

accessing the symbol at the head

ab_decl = ab.decl()

name = ab_decl.name()

if name == "and":

print("Found an And")

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 25

Quantified formula handling

u = DeclareSort(’U’)

H = Function(’Human ’, u, BoolSort ())

M = Function(’Mortal ’, u, BoolSort ())

x = Const(’x’, u)

y = Const(’y’, u)

all_mort = ForAll(x, Implies(H(x), M(x)))

print(all_mort.body ())

Output: Implies(Human(Var(0)), Mortal(Var (0)))

Var(0) is FOL variable

Naming quantified variables using DeBruijn index

alt = ForAll(x, Exists(y, Implies(H(x), M(y))))

print(alt.body (). body ())

Output: Implies(Human(Var(1)), Mortal(Var (0)))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 26

Topic 4.3

SMT2 format

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 27

API vs Input language

I Each solver has their own API

I We need a common input format for
I interoperability and
I database of problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 28

Standard format for SMT solvers

SMT2 is a standard input format for SMT solvers.

http://smtlib.cs.uiowa.edu/language.shtml

I Formulas are written in prefix notation (why?)

(>= (* 2 x) (+ y z))

I There is a simple type system. Similar to Z3 API.

I Solver interacts like a stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://smtlib.cs.uiowa.edu/language.shtml

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 29

File format

An SMT2 file has five parts

1. Preamble declarations

2. Sort declarations

3. Variable declarations

4. Asserting formulas

5. Solving commands

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 30

Preamble declaration

I Set configurations of the solvers

(set-logic QF_UFLIA) ;setting Theory/Logic

(set-option :produce-proofs true) ;enable proof generation if input is unsat

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 31

Sort declarations

I Declare new sorts of the variables

(declare-sort symbol numeral)

Example 4.1

(declare-sort U 0) ; new sort with no parameters

(declare-sort Arr 2) ; new sort with two parameters

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 32

Variable declarations

I Declare variables and functions that may be used in the formulas

(declare-fun symbol (sort*) sort)

Example 4.2

(declare-fun x () Int) ;declare variable

(declare-fun f (Int) Int) ;declare a function with one argument

(declare-fun g (Int Int) Int) ;declare a function with two arguments

(declare-fun h ((Arr U Int) Int) Int);declare a function with two argument

Sorts with parameters

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 33

Asserting formulas

I Formulas are asserted in a sequence

Example 4.3

(assert (>= (* 2 x) (+ y z)))

(assert (< (f x) (g x x)))

(assert (> (f y) (g x x)))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 34

Commands

I Commands are the actions that solver needs to do

Example 4.4

(check-sat) ; checks if the conjunction of asserted formula is sat

(get-model) ; returns a model if the formulas are sat

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 35

Stack interaction

The standard is designed to be interactive

I Asserted formulas are pushed in the stack of the solver

I (push) command places marker on the stack

I (pop) removes the formulas upto the last marker

Example 4.5

(push)

(assert (= x y))

(check-sat)

(pop)

After the pop the solver state goes back to the last push. Useful in interactive use of solver.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 36

Full example

(set-logic QF_UFLIA)

(set-option :produce-proofs true)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(declare-fun f (Int) Int)

(declare-fun g (Int Int) Int)

(assert (>= (* 2 x) (+ y z)))

(assert (< (f x) (g x x)))

(assert (> (f y) (g x x)))

(check-sat)

(get-model)

(push)

(assert (= x y))

(check-sat)

(pop)

(exit)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 37

Demo

http://rise4fun.com/z3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://rise4fun.com/z3

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 38

Topic 4.4

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 39

Exercise : Python programming

Exercise 4.10

Write a Python program that generates a random graph in a file edges.txt for n nodes and m
edges, which are given as command line options.
Please store edges in edges.txt as the following sequence of tuples
10,12

30,50

....

Exercise 4.11

Write a program that reads a directed graph from edges.txt and finds the number of strongly
connected components in the graph

Exercise 4.12

Write a program that reads a directed graph from edges.txt and finds the cliques of size k,
which is given as a command line option.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 40

Integer vs. Reals

Exercise 4.13
Consider the following constraints

3x − y ≥ 2 ∧ 3y − z ≥ 3 ∧ 3 ≥ x + y

Solve the above constraints using SMT solver under the following theories

I Reals (QF LRA)

I Int (QF LIA)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 41

Proving theorems

Exercise 4.14
Prove/disprove the following theorems using a solver

I Sky is blue. Space is black. Therefore sky and space are blue or black.

I Hammer and chainsaw are professional tools. Professional tools and vehicles are rugged.
Therefore, hammers are rugged.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 42

Exercise: translation validation

Exercise 4.15
Show that the following two circuits are equivalent.

F G K

H

C

D

L1
L2

L3

L4

L5

M

1

0 F
G

H

C

K

D

L1’

L2’

L3’

L5’

M′ M′′

1

0

1

0

Ls are latches, circles are Boolean circuts, and Ms are multiplexers.
Source: http://www.decision-procedures.org/slides/uf.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 43

Write a function: compute linear coefficient

Exercise 4.16
Find coefficient of each variable in a linear term. If the term is non-linear, throw an exception.

Examples:

x − 2x + y + 4 should return [4,−1, 1] if variables are ordered [x , y].

x − x + 4y − 2(2y) should return [0, 0, 0] if variables are ordered [x , y].

(x + 1) ∗ y should throw an exception

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 44

Write a function: find positive variables

Exercise 4.17
Find the set of Boolean variables that occur only positively in a propositional logic formula.

An occurrence of a variable is positive if there are even number of negations from the occurrence
to the root of the formula.

Examples:

Only q occurs positively in p ∧ ¬(¬q ∧ p).

p occurs positively in ¬¬p.

p does not occur positively in ¬p.

p and q occur positively in (p ∨ ¬r) ∧ (r ∨ q).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 45

Write a function: find quantifier alternation depth

Exercise 4.18
Compute quantifier alternations depth of a sentence.

Maximum number of quantifier type switches is any path from an atom to the root.

Examples: quantifier alternations depth of
∀x . ∃y . E (x , y) is 1.

∀x . ∃y . ∀z . E (x , y , z) is 2.

∀x . ∀y . E (x , y) is 0.

∀x . ((∃y . H(x , y))⇒ G (x)) is 0. (∃ under negation is ∀ and vice-versa)

∀x . ((∃y . H(x , y))⇒ ∃z . G (x , z)) is 1.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 46

Write a function: find unrelated constraints

Exercise 4.19
Consider a formula F consists of only a conjunction of atoms. Find the subsets of F that have
disjoint set of uninterpreted symbols.

Examples:

x = y ∧ x = z ∧ P(u) has two unrelated subsets {x = y , x = z} and {P(u)}

x + y = 3 ∧ z + u ≥ 10 has two unrelated subsets {x + y = 3} and {z + u ≥ 10}, while they
have a common interpreted symbol +.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 47

Write a function: find maximum occurring symbol

Exercise 4.20
Consider a formula F . Find the uninterpreted symbol in F that occurs most often.

Examples:

x occurs most often in g(g(x , x), g(x , x)).

f occurs most often in f (x , y) = f (x , b) ∧ f (2, 3) > 10.

D occurs most often in ∃x .(D(x)⇒ D(x + 1)). quantified variables are not counted.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 48

Write a function: find common symbols

Exercise 4.21
Consider formulas F1 and F2. Find uninterpreted symbols the occur both in F1 and F2.

Examples:

{x , f } occurs f (x) > 3 and f (y) < x, but not y

{f } occurs f (x) > 3 and ∀x .f (x) > y, but not x and y.

{f , x} occurs f (x) > 3 and x > 20 ∨ ∀x .f (x) > y. quantified variables are not counted.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 49

End of Lecture 4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Z3 solver
	Using solver
	SMT2 format
	Problems

