CS228 Logic for Computer Science 2020

Lecture 15: First-order logic - Semantics

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-07-28

Topic 15.1

FOL - semantics

Semantics: structures

Definition 15.1

For signature S = (F, R), a S-structure m is a

$$(D_m; \{f_m: D_m^n \to D_m | f/n \in \mathbf{F}\}, \{P_m \subseteq D_m^n | P/n \in \mathbf{R}\}),$$

where D_m is a nonempty set. Let S-Mods denotes the set of all S-structures.

Some terminology

- \triangleright D_m is called domain of m.
- $ightharpoonup f_m$ assigns meaning to f under structure m.
- \triangleright Similarly, P_m assigns meaning to P under structure m.

Example: structure

Example 15.1

Consider
$$\mathbf{S} = (\{c/0, f/1, g/2\}, \{H/1, M/2\}).$$

Let us suppose our structure m has domain $D_m = \{\bullet, \bullet, \bullet\}$.

• D_m

We need to assign value to each function.

$$\begin{array}{c} \blacktriangleright \ c_m = \bullet \\ \\ \blacktriangleright \ f_m = \{ \bullet \mapsto \bullet, \bullet \mapsto \bullet, \bullet \mapsto \bullet \} \\ \\ \blacktriangleright \ g_m = \{ (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet, \\ \\ (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet, \\ \\ (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet \} \\ \end{array}$$

We also need to assign values to each predicate.

Exercise 15.1

- a. How many structure are there for the signature with the above domain?
- b. Suppose $P/0 \in \mathbf{R}$, give a value to P_m .

Example: structure

Example 15.2

Consider $\mathbf{S} = (\{\cup/2\}, \{\in/2\}).$

$$m = (\mathbb{N}; \cup_m = max, \in_m = \{(i,j)|i < j\})$$
 is a **S**-structure.

Semantics: assignments

Recall, We also have variables. Who will assign to the variables?

Definition 15.2

An assignment is a map $\nu : \mathbf{Vars} \to D_m$

Example 15.3

In our running example the domain is \mathbb{N} . We may have the following assignment.

$$\nu = \{x \mapsto 2, y \mapsto 3\}$$

Semantics: term value

Definition 15.3

For a structure m and assignment ν , we define $m^{\nu}: T_{S} \rightarrow D_{m}$ as follows.

$$m^{
u}(x) \triangleq
u(x)$$
 $x \in \mathbf{Vars}$ $m^{
u}(f(t_1, \dots, t_n)) \triangleq f_m(m^{
u}(t_1), \dots, m^{
u}(t_n))$

Definition 15.4

Let t be a closed term. $m(t) \triangleq m^{\nu}(t)$ for any ν .

Example 15.4

Consider assignment $\nu = \{x \mapsto 2, y \mapsto 3\}$ and term $\cup (x, y)$. $m^{\nu}(\cup (x, y)) = \max(2, 3) = 3$

Example: satisfiability

Example 15.5

Consider
$$S = (\{s/1, +/2\}, \{\})$$
 and term $s(x) + y$

Consider structure
$$m = (\mathbb{N}; succ, +^{\mathbb{N}})$$
 and assignment $\nu = \{x \mapsto 3, y \mapsto 2\}$

$$m^{\nu}(s(x) + y) = m^{\nu}(s(x)) +^{\mathbb{N}} m^{\nu}(y) = succ(m^{\nu}(x)) +^{\mathbb{N}} 2 = succ(3) +^{\mathbb{N}} 2 = 6$$

Semantics: satisfaction relation

Definition 15.5

We define the satisfaction relation \models among structures, assignments, and formulas as follows

$$ightharpoonup m, \nu \models \top$$

$$ightharpoonup m,
u \models P(t_1, \dots, t_n) \quad \text{if} \quad (m^{\nu}(t_1), \dots, m^{\nu}(t_n)) \in P_m$$

$$ightharpoonup m, \nu \models \neg F$$
 if $m, \nu \not\models F$

▶
$$m, \nu \models F_1 \lor F_2$$
 if $m, \nu \models F_1$ or $m, \nu \models F_2$ skipping other boolean connectives

▶
$$m, \nu \models \exists x.(F)$$
 if there is $u \in D_m : m, \nu[x \mapsto u] \models F$

▶
$$m, \nu \models \forall x.(F)$$
 if for each $u \in D_m : m, \nu[x \mapsto u] \models F$

Example: satisfiability

Example 15.6

Consider **S** = $(\{s/1, +/2\}, \{\})$ and formula $\exists z.s(x) + y = s(z)$

Consider structure $m = (\mathbb{N}; succ, +^{\mathbb{N}})$ and assignment $\nu = \{x \mapsto 3, y \mapsto 2\}$

We have seen
$$m^{\nu}(s(x) + y) = 6$$
.

$$m^{\nu[z\mapsto 5]}(s(x)+y)=m^{\nu}(s(x)+y)=6.$$

Therefore.
$$m, \nu[z \mapsto 5] \models s(x) + v = s(z)$$
.

$$m \ \nu \models \exists z \ s(x) + v = s(z)$$

 $m^{\nu[z\mapsto 5]}(s(z))=6$

$$m, \nu \models \exists z.s(x) + y = s(z).$$

//Since z does not occur in the term

Exercise: satisfaction relation

Exercise 15.2

Consider sentence $F = \exists x. \forall y. \neg y \in X$ (what does it say to you!)

Consider
$$m = (\mathbb{N}; \cup_m = \max, \in_m = \{(i, j) | i < j\})$$
 and $\nu = \{x \mapsto 2, y \mapsto 3\}$.

Does m, ν |= *F*?

Exercise: structure

Consider $\mathbf{S} = (\{c/0, f/1\}, \{H/1, M/2\})$. Let us suppose structure m has $D_m = \{\bullet, \bullet, \bullet\}$ and the values of the symbols in m are

$$ightharpoonup c_m =
ightharpoonup$$

$$\blacktriangleright f_m = \{ \bullet \mapsto \bullet, \bullet \mapsto \bullet, \bullet \mapsto \bullet \}$$

$$ightharpoonup H_m = \{ ullet, ullet \}$$

$$\blacktriangleright M_m = \{(\bullet, \bullet), (\bullet, \bullet)\}$$

Exercise 15.3

Is the following sentence satisfied by the above structure?

- $ightharpoonup \exists x. H(x)$
- $ightharpoonup \exists x. H(f(x))$

- $\triangleright \forall x.H(x)$
- ► *H*(*c*)

Attendance quiz

Is following sentence satisfied by the structure on the slide?

```
c = f(f(c))
\exists x. H(x) \land H(f(x))
\exists x. M(x, x)
\exists x. \neg M(x, x)
\exists x. M(x, f(x))
\exists x. \neg M(x, f(x))
\forall x.(H(x) \Rightarrow f(x) \neq c)
\forall x.(c = x \Rightarrow H(x))
\forall x.(H(x) \Rightarrow \exists y.M(x,y))
c = f(c)
\exists x. H(f(f(x)))
\forall x. M(x, x)
\forall x. \neg M(x, x)
\forall x. M(x, f(x))
\forall x. \neg M(x, f(x))
\exists x.(H(x) \land f(x) = c)
\exists x.(c = x \land \neg H(x))
\exists x.(H(x) \land \forall v. \neg M(x, v))
```

Why nonempty domain?

We are required to have nonempty domain in the structure. Why?

Example 15.7

Consider formula $\forall x.(H(x) \land \neg H(x))$.

Should any structure satisfy the formula?

Nooooooo..

But, if we allow $m = \{\emptyset, H_m = \emptyset\}$ then

$$m \models \forall x.(H(x) \land \neg H(x)).$$

Due to this counterintuitive behavior, the empty domain is disallowed.

Example: non-standard structures

Example 15.8

Consider
$$S = (\{0/0, s/1, +/2\}, \{\})$$
 and formula $\exists z.s(x) + y = s(z)$

Unexpected structure: Let $m = (\{a, b\}^*; \epsilon, append_a, concat)$.

- ightharpoonup The domain of m is the set of all strings over alphabet $\{a,b\}$.
- ▶ append_a: appends a in the input and
- concat: joins two strings.

Let
$$\nu = \{x \mapsto ab, y \mapsto ba\}$$
.

Since
$$m, \nu[z \mapsto abab] \models s(x) + y = s(z)$$
, we have $m, \nu \models \exists z.s(x) + y = s(z)$.

Exercise 15.4

- ► Show $m, \nu[y \mapsto bb] \not\models \exists z.s(x) + y = s(z)$
- ▶ Give an assignment ν s.t. $m, \nu \models x \neq 0 \Rightarrow \exists y. \ x = s(y)$. Show $m \not\models \forall x. \ x \neq 0 \Rightarrow \exists y. \ x = s(y)$.

Satisfiable, true, valid, and unsatisfiable

We say

- ▶ F is satisfiable if there are m and ν such that $m, \nu \models F$
- ▶ Otherwise, *F* is called unsatisfiable
- ▶ *F* is *true* in m ($m \models F$) if for all ν we have $m, \nu \models F$
- ▶ F is valid ($\models F$) if for all ν and m we have $m, \nu \models F$

If F is a sentence, ν has no influence in the satisfaction relation.(why?)

For sentence F, we say

- ▶ F is true in m if $m \models F$
- ▶ Otherwise, *F* is *false* in *m*.

Extended satisfiability

We extend the usage of \models .

Definition 15.6

Let Σ be a (possibly infinite) set of formulas.

 $m, \nu \models \Sigma \text{ if } m, \nu \models F \text{ for each } F \in \Sigma.$

Definition 15.7

Let M be a (possibly infinite) set of structures.

 $M \models F$ if for each $m \in M$, $m \models F$.

Implication and equivalence

Definition 15.8

Let Σ be a (possibly infinite) set of formulas.

 $\Sigma \models F$ if for each structure m and assignment ν if $m, \nu \models \Sigma$ then $m, \nu \models F$.

$$\Sigma \models F$$
 is read Σ implies F . If $\{G\} \models F$ then we may write $G \models F$.

Definition 15.9

Let $F \equiv G$ if $G \models F$ and $F \models G$.

Equisatisfiable and equivalid

Definition 15.10

Formulas F and G are equisatisfiable if

F is sat iff G is sat.

Definition 15.11

Formulas F and G are equivalid if

$$\models F \quad \textit{iff} \quad \models G.$$

Topic 15.2

Problems

FOL to PL

Exercise 15.5

Give the restrictions on FOL such that it becomes the propositional logic. Give an example of FOL structure of a non-trivial propositional formula.

Valid formulas

Exercise 15.6

Prove/Disprove the following formulas are valid.

- $\blacktriangleright \forall x.P(x) \Rightarrow P(c)$
- $\blacktriangleright \forall x.(P(x) \Rightarrow P(c))$
- $ightharpoonup \exists x. (P(x) \Rightarrow \forall x. P(x))$
- $ightharpoonup \exists y \forall x. R(x, y) \Rightarrow \forall x \exists y. R(x, y)$
- $\blacktriangleright \forall x \exists y . R(x, y) \Rightarrow \exists y \forall x . R(x, y)$

Distributively

Exercise 15.7

Show the validity of the following formulas.

- 1. $\neg \forall x. P(x) \Leftrightarrow \exists x. \neg P(x)$
- 2. $(\forall x. (P(x) \land Q(x))) \Leftrightarrow \forall x. P(x) \land \forall x. Q(x)$
- 3. $(\exists x. (P(x) \lor Q(x))) \Leftrightarrow \exists x. P(x) \lor \exists x. Q(x)$

Exercise 15.8

Show \forall does not distribute over \vee .

Show \exists does not distribute over \land .

Encode mod k

Exercise 15.9

Give an FOL sentence that encodes that there are n elements in any satisfying structure, such that $n \mod k = 0$ for a given k.

Find structures

Exercise 15.10

For each of the following formula give a structure that satisfies the formula. If there is no structure that satisfies a formula, then report that the formula is unsatisfiable.

- 1. $\forall x. \exists y R(x, y) \land \neg \exists x. \forall y R(x, y)$
- 2. $\neg \forall x. \exists y R(x, y) \land \exists x. \forall y R(x, y)$
- 3. $\neg \forall x. \exists y R(x, y) \land \neg \exists x. \forall y R(x, y)$
- 4. $\forall x. \exists y R(x, y) \land \exists x. \forall y R(x, y)$

Unique quantifier

Exercise 15.11

We could consider enriching the language by the addition of a new quantifier. The formula $\exists !xF$. (read "there exists a unique x such that F") is to be satisfied in structure m and assignment ν iff there is one and only one $d \in D_m$ such that $m, \nu[x \to d] \models F$. Show that this apparent enrichment does not add any expressive power of FOL.

Hierarchy of formulas

Exercise 15.12

Topic 15.3

Extra slides: some properties of models

Homomorphisms of models

Definition 15.12

Consider S = (F, R). Let m and m' be S-models.

A function $h: D_m \to D_{m'}$ is a homomorphism of m into m' if the following holds.

▶ for each $f/n \in \mathbf{F}$, for each $(d_1, ..., d_n) \in D_m^n$

$$h(f_m(d_1,..,d_n)) = f_{m'}(h(d_1),..,h(d_n))$$

▶ for each $P/n \in \mathbf{R}$, for each $(d_1,..,d_n) \in D_m^n$

$$(d_1,..,d_n) \in P_m$$
 iff $(h(d_1),..,h(d_n)) \in P_{m'}$

Definition 15.13

A homomorphism h of m into m' is called isomorphism if h is one-to-one. m and m' are called isomorphic if an h exists that is also onto.

Example: homomorphism

Example 15.9

Consider
$$S = (\{+/2\}, \{\}).$$

Consider
$$m = (\mathbb{N}, +^{\mathbb{N}})$$
 and $m = (\mathcal{B}, \oplus^{\mathcal{B}})$,

$$h(n) = n \mod 2$$
 is a homomorphism of m into m'.

$Homomorphism\ theorem\ for\ terms\ and\ quantifier\mbox{-free}\ formulas\ without =$

Theorem 15.1

Let h be a homomorphism of m into m'. Let ν be an assignment.

- 1. For each term t, $h(m^{\nu}(t)) = m'^{(\nu \circ h)}(t)$
- 2. If formula F is quantifier-free and has no symbol "="

$$m^{\nu} \models F$$
 iff $m'^{(\nu \circ h)} \models F$

Proof.

Simple structural induction.

Exercise 15.13

For a quantifier-free formula F that may have symbol " \equiv ", show

if
$$m^{\nu} \models F$$
 then $m'^{(\nu \circ h)} \models F$

Homomorphism theorem with =

Theorem 15.2

Let h be a homomorphism of m into m'. Let ν be an assignment. If h is isomorphism then the reverse implication also holds for formulas with =.

Proof.

Let us suppose $m'^{(\nu \circ h)} \models s = t$.

Therefore, $m'^{(\nu \circ h)}(s) = m'^{(\nu \circ h)}(t)$.

Therefore,
$$h(m^{\nu}(s)) = h(m^{\nu}(t))$$
.

Due to the one-to-one condition of h, $m^{\nu}(s) = m^{\nu}(t)$.

Therefore, $m^{\nu} \models s = t$.

Exercise 15.14

For a formula F (with quantifiers) without symbol "=", show

if
$$m'^{(\nu \circ h)} \models F$$
 then $m^{\nu} \models F$.

Commentary: Note that that implication direction is switched from the previous exercise.

Homomorphism theorem with quantifiers

Theorem 15.3

Let h be a isomorphism of m into m' and ν be an assignment.

If h is also onto, the reverse direction also holds for the quantified formulas.

Proof.

Let us assume, $m^{\nu} \models \forall x.F$.

Choose $d' \in D_{m'}$. Since h is onto, there is a d such that d = h(d').

Therefore, $m^{\nu[x\mapsto d]} \models F$.

Therefore, $m'^{\nu[x\mapsto d']} \models F$.

Therefore, $m'^{(\nu \circ h)} \models \forall x. F.$

Theorem 15.4

If m and m' are isomorphic then for all sentences F,

$$m \models F$$
 iff $m' \models F$.

Commentary: The reverse direction of the above theorem is not true.

End of Lecture 15

