Automated Reasoning 2020

Lecture 21: Theory combination

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-11-13

Theory combination

A formula may have terms that involved multiple theories.

Example 21.1

$$\neg P(y) \land s = store(t, i, 0) \land x - y - z = 0 \land z + s[i] = f(x - y) \land P(x - f(f(z)))$$

The above formula involves theory of

- equality T_E
- ► linear integer arithmetic *T_Z*
- ▶ arrays T_A

How to check satisfiability of the formula?

Let suppose a formula refers to theories $\mathcal{T}_1, \ldots, \mathcal{T}_k$.

We will assume that we have decision procedures for each quantifier-free \mathcal{T}_i .

We will present a method that combines the decision procedures and provides a decision procedure for quantifier-free $Cn(\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_k)$.

Topic 21.1

Nelson-Oppen method

Nelson-Oppen method conditions

The Nelson-Oppen method combines theories that satisfy the following conditions

- 1. The signatures S_i are disjoint.
- 2. The theories are stably infinite
- 3. The formulas are conjunction of quantifier-free literals

Stably infinite theories

Definition 21.1

A theory is stably infinite if each quantifier-free satisfiable formula under the theory is satisfiable in an infinite model.

Example 21.2

Let us suppose we have the following axiom in a theory

$$\forall x, y, z. (x = y \lor y = z \lor z = x)$$

The above formula says that there are at most two elements in the domain of a satisfying model. Therefore, the theory is not stably infinite.

Nelson-Oppen method terminology I

We call a function of predicate in S_i is *i*-symbol.

Definition 21.2

A term t is an i-term if the top symbol is an i-symbol.

Definition 21.3

An i-atom is

- an i-predicate atom,
- ▶ s = t, where s is an i-term, or
- v = t, v is a variable and t is an i-term.

Definition 21.4

An i-literal is an i-atom or the negation of one.

Exercise 21.1 Let T_E , T_Z , and T_A are involved in a formula.

• store(
$$A, x, f(x + y)$$
) is

•
$$A[3] \le f(x)$$
 is

•
$$f(x) = 3 + y$$
 is

$$z = 3 + y$$
 is

•
$$z \neq 3 + y$$
 is

Nelson-Oppen method terminology II

Definition 21.5

An occurrence of a term t in i-term/literal is i-alien if t is a j-term for $i \neq j$ and all of its super-terms are i-terms.

Definition 21.6

An expression is pure if it contains only variables and i-symbols for some i.

Exercise 21.2

Let \mathcal{T}_E , \mathcal{T}_Z , and \mathcal{T}_A are involved in a formula. Find the alien term.

- In A[3] = f(x),
- ▶ In z = 3 + y,
- ▶ In $f(x) \neq f(2)$,

Nelson-Oppen method: convert to separate form

Let F be a conjunction of literals.

We produce an equiv-satisfiable $F_1 \wedge \cdots \wedge F_k$ such that F_i is a \mathcal{T}_i formula.

- 1. Pick an *i*-literal $\ell \in F$ for some *i*. $F := F \{\ell\}$.
- 2. If ℓ is pure, $F_i := F_i \cup \{\ell\}$.
- 3. Otherwise, there is a term t occurring *i*-alien in ℓ . Let z be a fresh variable. $F := F \cup \{\ell[t \mapsto z], z = t\}$.

4. go to step 1.

Example 21.3

Consider $1 \le x \le 2 \land f(x) \ne f(2) \land f(x) \ne f(1)$ of theory $Cn(\mathcal{T}_E \cup \mathcal{T}_Z)$.

Alien terms are $\{2,1\}$.

 $\textit{In separate form,} \qquad F_{\textit{E}} = f(x) \neq f(z) \land f(x) \neq f(y) \qquad \qquad F_{\textit{Z}} = 1 \leq x \leq 2 \land y = 1 \land z = 2$

Theory solvers need to coordinate

Let DP_i be the decision procedure of theory \mathcal{T}_i .

F is unsatisfiable if for some i, $DP_i(F_i)$ returns unsatisfiable.

However, if all $DP_i(F_i)$ return satisfiable, we can not guarantee satisfiability.

The decision procedures need to coordinate to check the satisfiability.

Definition 21.7

Let S be a set of terms and equivalence relation \sim over S.

$$F[\sim] := \bigwedge \{t = s | t \sim s \text{ and } t, s \in S\} \land \bigwedge \{t
eq s | t
eq s \text{ and } t, s \in S\}$$

 $F[\sim]$ will be used for the coordination.

Non-deterministic Nelson-Oppen method

Let \mathcal{T}_1 and \mathcal{T}_2 be two theories with disjoint signature.

Let *F* be a conjunction of literals for theory $Cn(\mathcal{T}_1 \cup \mathcal{T}_2)$.

- 1. Convert F to separate form $F_1 \wedge F_2$.
- 2. Guess an equivalence relation \sim over variables $vars(F_1) \cap vars(F_2)$.
- 3. Run $DP_1(F_1 \wedge F[\sim])$
- 4. Run $DP_2(F_2 \wedge F[\sim])$

If there is a \sim such that both steps 3 and 4 return satisfiable, F is satisfiable.

Otherwise F is unsatisfiable.

Exercise 21.3 Extend the above method for k theories.

Example: non-deterministic Nelson-Oppen method

Example 21.4

We had the following formula in separate form. $F_E = f(x) \neq f(z) \land f(x) \neq f(y)$ $F_Z = 1 \le x \le 2 \land y = 1 \land z = 2$

Common variables x, y, and z.

Five potential $F[\sim]s$

1.
$$x = y \land y = z \land z = x$$
 : Inconsistent with F_E

2.
$$x = y \land y \neq z \land z \neq x$$
 : Inconsistent with F_E

3.
$$x \neq y \land y \neq z \land z = x$$
 : Inconsistent with F_E

4.
$$x \neq y \land y = z \land z \neq x$$
: Inconsistent with F_Z

5.
$$x \neq y \land y \neq z \land z \neq x$$
 : Inconsistent with F_Z

Since all \sim are causing inconsistency, the formula is unsatisfiable.

Topic 21.2

Correctness of Nelson-Oppen

We have noticed if there are no quantifiers, variables behave like constants.

In the lecture, we will refer models and assignments together as models.

Definition 21.8

Let *m* be a model of signature S and variables V. Let $m|_{S',V'}$ be the restriction of *m* to the symbols in S' and the variables in V'.

Homomorphisms and isomorphism of models

Definition 21.9

Consider signature S = (F, R) and a variables V. Let m and m' be S, V-models. A function $h: D_m \to D_{m'}$ is a homomorphism of m into m' if the following holds.

▶ for each $f/n \in F$ and $(d_1, ..., d_n) \in D_m^n$, $h(f_m(d_1, ..., d_n)) = f_{m'}(h(d_1), ..., h(d_n))$

▶ for each
$$P/n \in R$$
 and $(d_1, ..., d_n) \in D_m^n$, $(d_1, ..., d_n) \in P_m$ iff $(h(d_1), ..., h(d_n)) \in P_{m'}$

• for each
$$v \in V$$
, $h(v_m) = v_{m'}$

Definition 21.10

A homomorphism h of m into m' is called isomorphism if h is one-to-one. m and m' are called isomorphic if an h exists that is also onto.

Isomorphic models ensure combined satisfiability

Theorem 21.1

Let F_i be a S_i -formula with variables V_i for $i \in \{1,2\}$. $F_1 \wedge F_2$ is satisfiable iff there are $m_1 \models F_1$ and $m_2 \models F_2$ such that

 $m_1|_{S_1 \cap S_2, V_1 \cap V_2}$ is isomorphic to $m_2|_{S_1 \cap S_2, V_1 \cap V_2}$.

Proof. (\Rightarrow) trivial.(why?)

(\Leftarrow). We have models $m_1 \models F_1$ and $m_2 \models F_2$. Let *h* be the onto isomorphism from $m_1|_{S_1 \cap S_2, V_1 \cap V_2}$ to $m_2|_{S_1 \cap S_2, V_1 \cap V_2}$.

We construct a model *m* for $F_1 \wedge F_2$.

Isomorphic models ensure combined satisfiability II

Proof(contd.)

Let $D_m = D_{m_1}$ and $m|_{S_1,V_1} = m_1$.

For
$$v \in V_2 - V_1$$
, $v_m = h^{-1}(v_{m_2})$

For
$$f/n \in S_2 - S_1$$
, $f_m(d_1, ..., d_n) = h^{-1}(f_{m_2}(h(d_1), ..., h(d_n)))$

... similarly for predicates.

Clearly $m \models F_1$. We can easily check $m \models F_2$.

Therefore, $m \models F_1 \land F_2$.

Equality preserving models ensure combined satisfiability

Theorem 21.2

Let F_i be a S_i -formula with variables V_i for $i \in \{1, 2\}$. Let $S_1 \cap S_2 = \emptyset$. $F_1 \wedge F_2$ is satisfiable iff there are $m_1 \models F_1$ and $m_2 \models F_2$ such that

Proof.
(
$$\Rightarrow$$
) trivial.(why?)

(⇐).
Let
$$V_m = \{v_m | v \in V\}$$
. Let $h: (V_1 \cap V_2)_{m_1} \rightarrow (V_1 \cap V_2)_{m_2}$ be defined as follows
 $h(v_{m_1}) := v_{m_2}$ for each $v \in V_1 \cap V_2$.

h is well-defined(why?), one-to-one(why?), and onto(why?).

Exercise 21.4 Prove the above whys @0@@ Automated Reasoning 2020

Instructor: Ashutosh Gupta

. . .

Equality preserving models ensure combined satisfiability II

Proof(contd.)

Therefore, $|(V_1 \cap V_2)_{m_1}| = |(V_1 \cap V_2)_{m_2}|$

Therefore,
$$|D_{m_1} - (V_1 \cap V_2)_{m_1}| = |D_{m_2} - (V_1 \cap V_2)_{m_2}|$$

Therefore, we can extend h to $h': D_{m_1} \mapsto D_{m_2}$ that is one-to-one and onto. $_{(why?)}$

By construction, h' is isomorphism from $m_1|_{V_1 \cap V_2}$ to $m_2|_{V_1 \cap V_2}$.

Therefore, by the previous theorem, $F_1 \wedge F_2$ is satisfiable.

Nelson-Oppen correctness

Theorem 21.3

Let \mathcal{T}_i be stably infinite S_i -theory and F_i be S_i a formula with variables V_i for $i \in \{1, 2\}$. Let $S_1 \cap S_2 = \emptyset$. $F_1 \wedge F_2$ is $Cn(\mathcal{T}_1 \cup \mathcal{T}_2)$ -satisfiable iff there is an equivalence relation \sim over $V_1 \cap V_2$ such that $F_i \wedge F[\sim]$ is \mathcal{T}_i -satisfiable.

Proof. (\Rightarrow) trivial.(why?)

(\Leftarrow). Suppose there is \sim over $V_1 \cap V_2$ such that $F_i \wedge F[\sim]$ is \mathcal{T}_i -satisfiable.

Since \mathcal{T}_i is stably infinite, there is an infinite model $m_i \models F_i \land F[\sim]$.

Due to LST (a standard theorem), $|m_1|$ and $|m_2|$ are infinity of same size.

Due to $m_1 \models F[\sim]$ and $m_2 \models F[\sim]$, $x_{m_1} = y_{m_1}$ iff $x_{m_2} = y_{m_2}$ for each $x, y \in V_1 \cap V_2$. Due to the previous theorem, $F_1 \wedge F_2$ is $Cn(\mathcal{T}_1 \cup \mathcal{T}_2)$ -satisfiable.

Topic 21.3

Implementation of Nelson-Oppen

Searching \sim

Enumerating \sim over shared variables S is very expensive.

Exercise 21.5 Let |S| = n. How many \sim are there?

The goal is to minimize the search.

- Reduce the size of S by simplify simplification formulas.
- $\blacktriangleright\,$ Efficient strategy of finding $\sim\,$

Commentary: In the simplification, we replace alien terms with native terms as much as possible.

Efficient search for \sim

We can use DPLL like search for \sim .

- ▶ Decision: Incrementally add a (dis)equality in ~.
- Backtracking: backtrack if a theory finds inconsistency and ensure early detection of inconsistency.
- ▶ Propagation: If an (dis)equality is implied by a current $F_i \land F[\sim]$ add them to \sim .

For convex theories, this strategy is very efficient. There is no need for decisions.

Commentary: We have a choice in the propagation step. We may be eager or lazy for deriving equalities. Eager propagation may require a lot of work in each theory. During backtracking we can use interpolation based method to lazily identify inferred equality/disequalities. C. Barrett, Checking Validity of Quantifier-Free Formulas in Combinations of First-Order Theories. PhD thesis, Stanford University,03

Convex theories

Definition 21.11

 \mathcal{T} is convex if for a conjunction literals F and variables $x_1, \ldots, x_n, y_1, \ldots, y_n$, $F \Rightarrow_{\mathcal{T}} x_1 = y_1 \lor \cdots \lor x_n = y_n$ implies for some $i \in 1..n$, $F \Rightarrow_{\mathcal{T}} x_i = y_i$.

Example 21.5

 $\mathcal{T}_{\mathbb{Q}}$ is convex and unfortunately $\mathcal{T}_{\mathbb{Z}}$ is not convex. Consider the following implication in $\mathcal{T}_{\mathbb{Z}}$.

$$1 \le x \le 2 \land y = 1 \land z = 2 \Rightarrow y = x \lor z = x$$

From the above we can not conclude that the LHS implies any of the equality in RHS.

Exercise 21.6 Is the theory of arrays convex?Hint: apply axiom 2

Exercise 21.7 Prove that if all theories are convex, there is no need for decision step in the previous slide?

(Hint: Introduce disequalities between equivalence classes. Show due to convexity, Fis will remain satisfiable.)

Incremental theory combination

Let F be a conjunctive input formula. Let S be a set of terms at the start.

- 1. If F is empty, return satisfiable.
- 2. Pick an *i*-literal $\ell \in F$ for some *i*. $F := F \{\ell\}$.
- 3. Simplify and purify ℓ to ℓ' and add the fresh variable names for alien terms to ${\it S}$
- 4. $F_i := F_i \cup \{\ell'\}.$
- 5. If F_i is unsatisfiable, return unsatisfiable.
- 6. For each $s, t \in S$, check if $F_i \Rightarrow t = s$ or $F_i \Rightarrow t \neq s$, add the fact to the other F_i s.
- 7. go to step 1.

If theories were convex then the above algorithm returns the answer. Otherwise, we need to explore far reduced space for \sim in case of satisfiable response.

Example: Nelson-Oppen on convex theories == (Dis)Equality exchange

Example 21.6

Consider formula: $f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$

After separation we obtain two formulas in theory of equality and \mathbb{Q} : $F_E = f(w) \neq f(z) \land u = f(x) \land v = f(y)$ $F_{\mathbb{Q}} = x \leq y \land y + z \leq x \land 0 \leq z \land u - v = w$

Common symbols $S = \{w, u, v, z, x, y\}$.

Action
Equality discovery:
Equality exchange and discovery:
Equality exchange and discovery:
Equality exchange and discovery:
Equality exchange: $\mathcal{T}_{\mathbb{Q}}$
 $\mathcal{F}_{\mathbb{Q}} \Rightarrow x = y$
 $\mathcal{F}_{Q} \wedge u = v \Rightarrow w = z_{(why?)}$ \mathcal{T}_{E}
 $\mathcal{F}_{E} \wedge x = y \Rightarrow u = v$
 $\mathcal{F}_{E} \wedge x = y \wedge w = z \Rightarrow \bot$ Contradiction. The formula is unsatisfiable. $\mathcal{T}_{\mathbb{Q}}$
 $\mathcal{F}_{\mathbb{Q}} \Rightarrow x = y$
 $\mathcal{F}_{\mathbb{Q}} \wedge u = v \Rightarrow w = z_{(why?)}$ \mathcal{T}_{E}
 $\mathcal{F}_{E} \wedge x = y \Rightarrow u = v$
 $\mathcal{F}_{E} \wedge x = y \wedge w = z \Rightarrow \bot$

Example: Nelson-Oppen on non-convex theories == (Dis)Equality exchange + case split

Example 21.7

Consider formula in $\mathcal{T}_E \cup \mathcal{T}_{\mathbb{Z}}$: $1 \le x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

After separation we obtain two formulas in theory of equality and \mathbb{Q} : $F_E = f(x) \neq f(y) \land f(x) \neq f(z)$ $F_{\mathbb{Z}} = 1 \le x \le 2 \land y = 1 \land z = 2$

Common symbols $S = \{x, y, z\}$.

Action
Disjunctive equality discovery: $\mathcal{T}_{\mathbb{Z}}$
 $F_{\mathbb{Z}} \Rightarrow x = y \lor x = z$ \mathcal{T}_{E}
 $F_{\mathbb{Z}} \Rightarrow x = y \lor x = z$ \mathcal{T}_{E}
 $F_{E} \land x = y \Rightarrow \bot$
 $F_{E} \land x = z \Rightarrow \bot$ Equality case x = z: $F_{E} \land x = z \Rightarrow \bot$ Contradiction. The formula is unsatisfiable.

Example: a satisfiable formula

Example 21.8

Consider formula in $\mathcal{T}_E \cup \mathcal{T}_{\mathbb{Z}}$: $1 \le x \le 3 \land f(x) \ne f(1) \land f(x) \ne f(3) \land f(1) \ne f(2)$

After separation we obtain two formulas in theory of equality and \mathbb{Q} : $F_E = f(x) \neq f(y) \land f(x) \neq f(w) \land f(y) \neq f(z)$ $F_{\mathbb{Z}} = 1 \le x \le 3 \land y = 1 \land z = 2 \land w = 3$

Common symbols $S = \{x, y, z, w\}$.

Action	$\mid \mathcal{T}_{\mathbb{Z}}$	$ \mathcal{T}_{E} $
Equality discovery:	$F_{\mathbb{Z}} \Rightarrow x = y \lor x = z \lor x = w$	
	$F_{\mathbb{Z}} \Rightarrow distinct(y, z, w)$	
Equality case $x = y$:		$F_E \land x = y \land distinct(y, z, w) \Rightarrow \bot$
Equality case $x = w$:		$F_E \land x = w \land distinct(y, z, w) \Rightarrow \bot$
Equality case $x = z$:		$F_{E} \land x = z \land distinct(y, z, w) \not\Rightarrow \bot$

Commentary: distinct $(y, z, w) \triangleq y \neq z \land z \neq w \land w \neq y$

0		R	6	
6	U	9	ື	

End of Lecture 21

