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Theory combination

A formula may have terms that involved multiple theories.

Example 21.1

¬P(y) ∧ s = store(t, i , 0) ∧ x − y − z = 0∧ z + s[i ] = f (x − y) ∧ P(x − f (f (z)))

The above formula involves theory of

I equality TE
I linear integer arithmetic TZ
I arrays TA

How to check satisfiability of the formula?
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Combination solving

Let suppose a formula refers to theories T1,....,Tk .

We will assume that we have decision procedures for each quantifier-free Ti .

We will present a method that combines the decision procedures and provides a decision
procedure for quantifier-free Cn(T1 ∪ . . . ∪ Tk).
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Topic 21.1

Nelson-Oppen method
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Nelson-Oppen method conditions

The Nelson-Oppen method combines theories that satisfy the following conditions

1. The signatures Si are disjoint.

2. The theories are stably infinite

3. The formulas are conjunction of quantifier-free literals

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 6

Stably infinite theories

Definition 21.1
A theory is stably infinite if each quantifier-free satisfiable formula under the theory is satisfiable
in an infinite model.

Example 21.2

Let us suppose we have the following axiom in a theory

∀x , y , z . (x = y ∨ y = z ∨ z = x)

The above formula says that there are at most two elements in the domain of a satisfying model.
Therefore, the theory is not stably infinite.
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Nelson-Oppen method terminology I

We call a function of predicate in Si is i-symbol.

Definition 21.2
A term t is an i-term if the top symbol is an i-symbol.

Definition 21.3
An i-atom is

I an i-predicate atom,

I s = t, where s is an i-term, or

I v = t, v is a variable and t is an i-term.

Definition 21.4
An i-literal is an i-atom or the negation of one.

Exercise 21.1
Let TE , TZ , and TA are involved in a
formula.
I x + y is

I store(A, x , f (x + y)) is

I A[3] ≤ f (x) is

I f (x) = 3 + y is

I z = 3 + y is

I z 6= 3 + y is
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Nelson-Oppen method terminology II

Definition 21.5
An occurrence of a term t in i-term/literal is i-alien if t is a j-term for i 6= j and all of its
super-terms are i-terms.

Definition 21.6
An expression is pure if it contains only variables and i-symbols for some i .

Exercise 21.2
Let TE , TZ , and TA are involved in a formula. Find the alien term.

I In A[3] = f (x),

I In z = 3 + y ,

I In f (x) 6= f (2),

I In f (x) = A[3],

I In store(a, x + y , f (z)),
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Nelson-Oppen method: convert to separate form
Let F be a conjunction of literals.
We produce an equiv-satisfiable F1 ∧ · · · ∧ Fk such that Fi is a Ti formula.

1. Pick an i-literal ` ∈ F for some i . F := F − {`}.
2. If ` is pure, Fi := Fi ∪ {`}.
3. Otherwise, there is a term t occurring i-alien in `.

Let z be a fresh variable. F := F ∪ {`[t 7→ z ], z = t}.
4. go to step 1.

Example 21.3

Consider 1 ≤ x ≤ 2 ∧ f (x) 6= f (2) ∧ f (x) 6= f (1) of theory Cn(TE ∪ TZ ).

Alien terms are {2, 1}.

In separate form, FE = f (x) 6= f (z) ∧ f (x) 6= f (y) FZ = 1 ≤ x ≤ 2 ∧ y = 1 ∧ z = 2
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Theory solvers need to coordinate

Let DPi be the decision procedure of theory Ti .

F is unsatisfiable if for some i , DPi (Fi ) returns unsatisfiable.

However, if all DPi (Fi ) return satisfiable, we can not guarantee satisfiability.

The decision procedures need to coordinate to check the satisfiability.
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Equivalence constraints

Definition 21.7
Let S be a set of terms and equivalence relation ∼ over S .

F [∼] :=
∧
{t = s|t ∼ s and t, s ∈ S} ∧

∧
{t 6= s|t 6∼ s and t, s ∈ S}

F [∼] will be used for the coordination.
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Non-deterministic Nelson-Oppen method

Let T1 and T2 be two theories with disjoint signature.

Let F be a conjunction of literals for theory Cn(T1 ∪ T2).

1. Convert F to separate form F1 ∧ F2.

2. Guess an equivalence relation ∼ over variables vars(F1) ∩ vars(F2).

3. Run DP1(F1 ∧ F [∼])

4. Run DP2(F2 ∧ F [∼])

If there is a ∼ such that both steps 3 and 4 return satisfiable, F is satisfiable.

Otherwise F is unsatisfiable.

Exercise 21.3
Extend the above method for k theories.
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Example: non-deterministic Nelson-Oppen method

Example 21.4

We had the following formula in separate form.
FE = f (x) 6= f (z) ∧ f (x) 6= f (y) FZ = 1 ≤ x ≤ 2 ∧ y = 1 ∧ z = 2

Common variables x , y , and z .

Five potential F [∼]s

1. x = y ∧ y = z ∧ z = x : Inconsistent with FE

2. x = y ∧ y 6= z ∧ z 6= x : Inconsistent with FE

3. x 6= y ∧ y 6= z ∧ z = x : Inconsistent with FE

4. x 6= y ∧ y = z ∧ z 6= x : Inconsistent with FZ

5. x 6= y ∧ y 6= z ∧ z 6= x : Inconsistent with FZ

Since all ∼ are causing inconsistency, the formula is unsatisfiable.
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Topic 21.2

Correctness of Nelson-Oppen
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model and assignment

We have noticed if there are no quantifiers, variables behave like constants.

In the lecture, we will refer models and assignments together as models.

Definition 21.8
Let m be a model of signature S and variables V . Let m|S′,V ′ be the restriction of m to the
symbols in S′ and the variables in V ′.
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Homomorphisms and isomorphism of models

Definition 21.9
Consider signature S = (F,R) and a variables V . Let m and m′ be S,V -models. A function
h : Dm → Dm′ is a homomorphism of m into m′ if the following holds.

I for each f /n ∈ F and (d1, .., dn) ∈ Dn
m, h(fm(d1, .., dn)) = fm′(h(d1), .., h(dn))

I for each P/n ∈ R and (d1, .., dn) ∈ Dn
m, (d1, .., dn) ∈ Pm iff (h(d1), .., h(dn)) ∈ Pm′

I for each v ∈ V , h(vm) = vm′

Definition 21.10
A homomorphism h of m into m′ is called isomorphism if h is one-to-one.
m and m′ are called isomorphic if an h exists that is also onto.
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Isomorphic models ensure combined satisfiability

Theorem 21.1
Let Fi be a Si -formula with variables Vi for i ∈ {1, 2}. F1 ∧ F2 is satisfiable iff there are m1 |= F1

and m2 |= F2 such that

m1|S1∩S2,V1∩V2 is isomorphic to m2|S1∩S2,V1∩V2 .

Proof.
(⇒) trivial.(why?)

(⇐).
We have models m1 |= F1 and m2 |= F2.
Let h be the onto isomorphism from m1|S1∩S2,V1∩V2 to m2|S1∩S2,V1∩V2 .

We construct a model m for F1 ∧ F2. ...
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Isomorphic models ensure combined satisfiability II

Proof(contd.)

Let Dm = Dm1 and m|S1,V1 = m1.

For v ∈ V2 − V1, vm = h−1(vm2)

For f /n ∈ S2 − S1, fm(d1, .., dn) = h−1(fm2(h(d1), .., h(dn)))

... similarly for predicates.

Clearly m |= F1. We can easily check m |= F2.

Therefore, m |= F1 ∧ F2.
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Equality preserving models ensure combined satisfiability

Theorem 21.2
Let Fi be a Si -formula with variables Vi for i ∈ {1, 2}. Let S1 ∩ S2 = ∅. F1 ∧ F2 is satisfiable iff
there are m1 |= F1 and m2 |= F2 such that

I |Dm1 | = |Dm2 | and

I xm1 = ym1 iff xm2 = ym2 for each x , y ∈ V1 ∩ V2

Proof.
(⇒) trivial.(why?)

(⇐).
Let Vm = {vm|v ∈ V }. Let h : (V1 ∩ V2)m1 → (V1 ∩ V2)m2 be defined as follows

h(vm1) := vm2 for each v ∈ V1 ∩ V2.

h is well-defined(why?), one-to-one(why?), and onto(why?). ...

Exercise 21.4 Prove the above whys
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Equality preserving models ensure combined satisfiability II

Proof(contd.)

Therefore, |(V1 ∩ V2)m1 | = |(V1 ∩ V2)m2 |

Therefore, |Dm1 − (V1 ∩ V2)m1 | = |Dm2 − (V1 ∩ V2)m2 |

Therefore, we can extend h to h′ : Dm1 7→ Dm2 that is one-to-one and onto.(why?)

By construction, h′ is isomorphism from m1|V1∩V2 to m2|V1∩V2 .

Therefore, by the previous theorem, F1 ∧ F2 is satisfiable.
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Nelson-Oppen correctness

Theorem 21.3
Let Ti be stably infinite Si -theory and Fi be Si a formula with variables Vi for i ∈ {1, 2}. Let
S1 ∩ S2 = ∅. F1 ∧ F2 is Cn(T1 ∪ T2)-satisfiable iff there is an equivalence relation ∼ over V1 ∩ V2

such that Fi ∧ F [∼] is Ti -satisfiable.

Proof.
(⇒) trivial.(why?)

(⇐). Suppose there is ∼ over V1 ∩ V2 such that Fi ∧ F [∼] is Ti -satisfiable.

Since Ti is stably infinite, there is an infinite model mi |= Fi ∧ F [∼].

Due to LST (a standard theorem), |m1| and |m2| are infinity of same size.

Due to m1 |= F [∼] and m2 |= F [∼], xm1 = ym1 iff xm2 = ym2 for each x , y ∈ V1 ∩ V2.
Due to the previous theorem, F1 ∧ F2 is Cn(T1 ∪ T2)-satisfiable.
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Topic 21.3

Implementation of Nelson-Oppen
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Searching ∼

Enumerating ∼ over shared variables S is very expensive.

Exercise 21.5
Let |S | = n. How many ∼ are there?

The goal is to minimize the search.

I Reduce the size of S by simplify simplification formulas.

I Efficient strategy of finding ∼

Commentary: In the simplification, we replace alien terms with native terms as much as possible.
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Efficient search for ∼

We can use DPLL like search for ∼.

I Decision: Incrementally add a (dis)equality in ∼.

I Backtracking: backtrack if a theory finds inconsistency and ensure early detection of
inconsistency.

I Propagation: If an (dis)equality is implied by a current Fi ∧ F [∼] add them to ∼.

For convex theories, this strategy is very efficient. There is no need for decisions.

Commentary: We have a choice in the propagation step. We may be eager or lazy for deriving equalities. Eager propagation may require a lot of work in each theory.
During backtracking we can use interpolation based method to lazily identify inferred equality/disequalities. C. Barrett.Checking Validity of Quantifier-Free Formulas in
Combinations of First-Order Theories. PhD thesis, Stanford University,03
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Convex theories

Definition 21.11
T is convex if for a conjunction literals F and variables x1, . . . , xn, y1, . . . , yn,
F ⇒T x1 = y1 ∨ · · · ∨ xn = yn implies for some i ∈ 1..n, F ⇒T xi = yi .

Example 21.5

TQ is convex and unfortunately TZ is not convex. Consider the following implication in TZ.

1 ≤ x ≤ 2 ∧ y = 1 ∧ z = 2⇒ y = x ∨ z = x

From the above we can not conclude that the LHS implies any of the equality in RHS.

Exercise 21.6
Is the theory of arrays convex?Hint: apply axiom 2

Exercise 21.7
Prove that if all theories are convex, there is no need for decision step in the previous slide?
(Hint: Introduce disequalities between equivalence classes. Show due to convexity, Fi s will remain satisfiable.)
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Incremental theory combination

Let F be a conjunctive input formula. Let S be a set of terms at the start.

1. If F is empty, return satisfiable.

2. Pick an i-literal ` ∈ F for some i . F := F − {`}.
3. Simplify and purify ` to `′ and add the fresh variable names for alien terms to S

4. Fi := Fi ∪ {`′}.
5. If Fi is unsatisfiable, return unsatisfiable.

6. For each s, t ∈ S , check if Fi ⇒ t = s or Fi ⇒ t 6= s, add the fact to the other Fjs.

7. go to step 1.

If theories were convex then the above algorithm returns the answer. Otherwise, we need to
explore far reduced space for ∼ in case of satisfiable response.
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Example: Nelson-Oppen on convex theories == (Dis)Equality exchange

Example 21.6

Consider formula: f (f (x)− f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

After separation we obtain two formulas in theory of equality and Q:
FE = f (w) 6= f (z) ∧ u = f (x) ∧ v = f (y) FQ = x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ u − v = w

Common symbols S = {w , u, v , z , x , y}.

Action TQ TE
Equality discovery: FQ ⇒ x = y
Equality exchange and discovery: FE ∧ x = y ⇒ u = v
Equality exchange and discovery: FQ ∧ u = v ⇒ w = z (why?)

Equality exchange: FE ∧ x = y ∧ w = z ⇒ ⊥
Contradiction.The formula is unsatisfiable.
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Example: Nelson-Oppen on non-convex theories == (Dis)Equality
exchange + case split

Example 21.7

Consider formula in TE ∪ TZ: 1 ≤ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

After separation we obtain two formulas in theory of equality and Q:
FE = f (x) 6= f (y) ∧ f (x) 6= f (z) FZ = 1 ≤ x ≤ 2 ∧ y = 1 ∧ z = 2

Common symbols S = {x , y , z}.

Action TZ TE
Disjunctive equality discovery: FZ ⇒ x = y ∨ x = z
Equality case x = y : FE ∧ x = y ⇒ ⊥
Equality case x = z : FE ∧ x = z ⇒ ⊥

Contradiction.The formula is unsatisfiable.
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Example: a satisfiable formula

Example 21.8

Consider formula in TE ∪ TZ: 1 ≤ x ≤ 3 ∧ f (x) 6= f (1) ∧ f (x) 6= f (3) ∧ f (1) 6= f (2)

After separation we obtain two formulas in theory of equality and Q:
FE = f (x) 6= f (y) ∧ f (x) 6= f (w) ∧ f (y) 6= f (z) FZ = 1 ≤ x ≤ 3 ∧ y = 1 ∧ z = 2 ∧ w = 3

Common symbols S = {x , y , z ,w}.

Action TZ TE
Equality discovery: FZ ⇒ x = y ∨ x = z ∨ x = w

FZ ⇒ distinct(y , z ,w)
Equality case x = y : FE ∧ x = y ∧ distinct(y , z ,w)⇒ ⊥
Equality case x = w : FE ∧ x = w ∧ distinct(y , z ,w)⇒ ⊥
Equality case x = z : FE ∧ x = z ∧ distinct(y , z ,w) 6⇒ ⊥

Since x = z ∧ distinct(y , z ,w) fully defines ∼ over S , therefore the formula is satisfiable.Commentary: distinct(y, z,w) , y 6= z ∧ z 6= w ∧ w 6= y

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna Automated Reasoning 2020 Instructor: Ashutosh Gupta IITB, India 30

End of Lecture 21
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