
cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent
programs 2020

Lecture 3: Weakest pre and Hoare logic

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-01-27

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 2

Topic 3.1

Weakest precondition

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 3

Executing program backwards.

The strongest post(sp) does not care about the error states.

Once we are done computing sp, we check that error states are reached.

Alternatively, we may think about executing backwards.

We start with good states and go backwards.

We find the states that are guaranteed to only reach to good states.

Exercise 3.1
How do we say that program is safe when we compute the states?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 4

Weakest pre — dual of sp

Now we define a an operator that executes the programs backwards!

Definition 3.1
Weakest pre operator wp : p(Q|V |)× P → p(Q|V |) is defined as follows.

wp(X , c) , {v |∀v ′ : (v ′, skip) ∈ T ∗((v , c))⇒ v ′ ∈ X},

where X ⊆ Q|V | and c is a program.

wp(X , c) X
×

Example 3.1

Consider V = [x] and X = {[n]|5 > n > 0}.
wp(X , x := x + 1[]x := x− 1) = {[n]|4 > n > 1}

Exercise 3.2
Why use of word
“weakest”?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 5

Logical weakest pre

We define symbolic wp that transforms formulas.

wp : Σ(V )× P → Σ(V )

The equivalent definition of symbolic wp for data statements are

wp(F , c) , (∀V ′ : ρ(c)⇒ F [V ′/V ])

Example 3.2

I wp(>, c) = >
I wp(⊥, c) = those states that do not have any successor for c

First rename
then quantify

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 6

Notation altert: variable substitution

We write

F [V ′/V ]
we will replace variables V in the formula by expressions V ′.

Example 3.3

I (x + y)[x ′/x ] = x ′ + y

We may also use a clearer alternative notation.

F{x 7→ exp1, y 7→ exp2, ....}

However, this notation is less common in literature.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 7

Weakest pre for assignment

Theorem 3.1
wp(F , x := exp) = F [exp/x]

Proof.
Due to the definition of wp,
wp(F , x := exp) = (∀V ′. x′ = exp ∧ frame(x)︸ ︷︷ ︸

equality for each variable

⇒ F [V ′/V ])

We apply the equalities on the right hand side and remove prime variables.

= (∀V ′. > ⇒ F [exp/x])

Since no primed variables left in the formula, we obtain.

= F [exp/x]

Recall, the similar simplification is not possible in the case of sp.(why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 8

Exercise: wp for assignment

Exercise 3.3

1. wp(i = 2, i := 1) =

2. wp(i = 1, i := 1) =

3. wp(i ≥ 0, i := 1) =

4. wp((i ≤ 3 ∧ r = (i − 1)z + 1), i := 1) =

5. wp((i < 3 ∧ r = iz + 1), r := r + z) =

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 9

Weakest pre for havoc

Theorem 3.2
wp(F , x := havoc()) = ∀x . F

Proof.
Due to the definition of wp,
wp(F , x := havoc()) = (∀V ′. frame(x)︸ ︷︷ ︸

equality for each variable except x′

⇒ F [V ′/V ])

We apply the equalities on the rhs and left with only x′ from V ′.

= (∀V ′. > ⇒ F [x′/x])

After simplification, we obtain.

= ∀x ′. F [x′/x].

Since the outside world does not care about the quantified variable name, no
need for the renaming.

= ∀x . F
Commentary: Similar to the local variables in a programming language, the outside world does not care about the nume of quantified
variable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 10

Example: wp for havoc

Example 3.4

1. wp(i = 2, i := havoc()) = ⊥
2. wp(x = 1, i := havoc()) = (x = 1)

Exercise 3.4
Compute the following

1. wp(i + x ≥ 0, i := havoc()) =

2. wp( (x+i ≥ 0∧x−i ≤ 0)∨ (x+i ≤ 2∧x−i ≥ 0) , i := havoc()) =

Commentary: Hint: for the forth problem draw the two dimensional diagram for the formula and look for values of x such that for all i
the formula is true.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 11

Weakest pre for assume

Theorem 3.3
wp(F , assume(G)) = G ⇒ F

Proof.
Due to the definition of wp,
wp(F , assume(G)) = (∀V ′. G ∧ frame(∅)︸ ︷︷ ︸

equality for each variable

⇒ F [V ′/V ])

We apply the equalities on the rhs and left with no variables from V ′.

= (∀V ′. G ⇒ F )

We can trivially remove V ′.

= (G ⇒ F )

Example 3.5

I wp(x < 0, assume(x > 0)) = (x > 0⇒ x < 0) = x ≤ 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 12

Weakest pre for assert

Theorem 3.4
wp(F , assert(G)) = G ∧ F if F 6≡ >

Proof.
Due to the definition of wp,
wp(F , assert(G)) = (∀V ′. (G ⇒ frame(∅)︸ ︷︷ ︸

equality for each variable

)⇒ F [V ′/V ])

= ∀V ′. ¬(G ⇒ frame(∅)) ∨ F [V ′/V ] (⇒ to ∨)

= ∀V ′. ¬(¬G ∨ frame(∅)) ∨ F [V ′/V ] (⇒ to ∨)

= ∀V ′. (G ∧ ¬frame(∅)) ∨ F [V ′/V ] (push ¬ inside)

= ∀V ′. (G ∨ F [V ′/V ]) ∧ (¬frame(∅) ∨ F [V ′/V ]) (D’morgan law)

...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 13

Weakest pre for assert (contd.)

Proof(contd.)

= ∀V ′. (G ∨ F [V ′/V ]) ∧ ∀V ′. (¬frame(∅) ∨ F [V ′/V ]) (∀ distributes over ∧)

= ( G ∨ ∀V ′. F [V ′/V ]︸ ︷︷ ︸
sinceG has no V’ variables

) ∧ ∀V ′. (frame(∅)⇒ F [V ′/V ])︸ ︷︷ ︸
∨ to ⇒

= (G ∨ ∀V . F ) ∧ ∀V ′. (> ⇒ F )

= (G ∨ ⊥) ∧ F ∀V . F is false(why?)

= G ∧ F

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 14

Exercise: weakest pre for assert and assume

Exercise 3.5
Compute the following

1. wp(i = 2, assume(i = 3)) =

2. wp(i = 2, assert(i = 3)) =

3. wp(i = 2, assume(i = 2)) =

4. Are there F and G such that wp(F , assume(G)) = ⊥?

5. Are there F and G such that wp(F , assert(G)) = >?

Commentary: wp over assume returns large set of states and over asserts returns small set. sp behaves in the opposite way.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 15

Logical wp for control statements (other than while)

The definition of symbolic wp for control statements are

wp(F , c1; c2) = wp(wp(F , c2), c1)
wp(F , c1[]c2) = wp(F , c1) ∧ wp(F , c2)
wp(F , if(F1) c1 else c2) = wp(F , assume(F1); c1) ∧ wp(F , assume(¬F1); c2)

Example 3.6

wp(x = 0, if(y > 0) x := x + 1 else x := x− 1) =
wp(x = 0, assume(y > 0); x := x+1)∧wp(x = 0, assume(y ≤ 0); x := x−1)
= wp(x = −1, assume(y > 0)) ∧ wp(x = 1, assume(y ≤ 0))
= (x = −1 ∨ y ≤ 0) ∧ (x = 1 ∨ y > 0)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 16

Logical weakest pre for control statements for loop

wp(F , while(G )c) = gfpF ′((G ∨ F ) ∧ wp(F ′, assume(G); c))

F

¬G ⇒ F

assume(¬G)

F ′∧

assume(G); c

Exercise 3.6
Why gfp not lfp?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 17

Exercise: wp over loops

Exercise 3.7 (Give intuitive answers!)

Compute the following

1. wp(y < 2, while(y < 10) y := y + 1) =

2. wp(y ≥ 10, while(y < 10) y := y + 1) =

3. wp(y = 11, while(y < 10) y := y + 1) =

4. wp(y = 10, while(y < 10) y := y + 1) =

5. wp(y = 0, while(>) y := y + 1) =

Commentary: Again, we have not seen an algorithm to compute gfp. However, we should be able to answer the above using our
understanding of programming.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 18

Handling Non-terminating executions

I have cheated a bit. Our wp allows states that may lead to non-terminating
executions and never reach to the final state.

Our definition of wp is called (check wikipedia)

weakest liberal precondition(wlp),
since our wp includes non-terminating executions.

There is a stricter definition of wp for loops that insists to include states that
lead to only terminating executions.

We ignore the exact encoding for the stricter wp for most of this course.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 19

Safety verification via wp

Lemma 3.1
For a program c, if err = 0⇒ wp(err = 0, c) is valid then c is safe.

Exercise 3.8
Prove the above lemma.

Exercise 3.9
Is wp any better than the sp based verification?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 20

Topic 3.2

Hoare logic

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 21

Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Proof method has following steps
I guess a super set of reachable states
I show guess is correct
I show the guess does not intersect with error states

I Invented by Tony Hoare
I sometimes called axiomatic semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 22

Hoare Triple

Definition 3.2

{P}c{Q}

I P : Σ(V ), usually called precondition

I c : P
I Q : Σ(V ), usually called postcondition

Definition 3.3
{P}c{Q} is valid if all the executions of c that start from P end in Q, i.e.,

∀v , v ′. v |= P ∧ ((v , c), (v ′, skip)) ∈ T ∗ ⇒ v ′ |= Q.

P and Q are not tightly related
by weakest pre or strongest post.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 23

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.7
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 24

Notation alert: deduction rules

RuleName Stuff-already-there
Stuff-to-be-added Conditions to be met

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 25

Hoare Proof System – data statements

[SkipRule]
{P}skip{P}

[AssignRule]
{P[exp/x ]}x := exp{P}

[HavocRule]
{∀x .P}x := havoc(){P}

[AssumeRule]
{P}assume(F){F ∧ P}

We may freely choose any of sp and wp for pre/post pairs for data statements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 26

Example: Hoare proof system – data statements

Example 3.8

We may have the following derivations due to the rules.

{i = 0}i := i + 1{i = 1}

{i = 0}assume(x > 0){i = 0 ∧ x > 0}

{r = 1}i := 1{i ≤ 3 ∧ r = (i − 1)z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 27

Hoare Proof System – sequential composition

[SeqRule]
{P}c1{Q} {Q}c2{R}

{P}c1; c2{R}

Example 3.9

{>}r := 1{r = 1} {r = 1}i := 1{i ≤ 3 ∧ r = (i − 1)z + 1}
{>}r := 1; i := 1; {i ≤ 3 ∧ r = (i − 1)z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 28

Hoare proof system – nondeterminism

[NondetRule]
{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

Example 3.10

{>}r := 1{r ≥ 1} {>}r := 2{r ≥ 1}
{>}r := 1[]r := 2{r ≥ 1}

Example 3.11

{>}r := 1{r ≥ 1} {>}r := 2{r ≥ 2}
{>}r := 1[]r := 2{??}

7

Both pre and post must match to apply the rule

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 29

Hoare proof system – branching

[IfRule]
{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

IfRule is the combination of NondetRule and SeqRule.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 30

Hoare proof system – semantic weakening

[ConsequenceRule]
P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}

We can strengthen pre and weaken post, without loosing soundness.

The rule is useful for matching pre/posts for compositions.

Example 3.12

{>}r := 1{r ≥ 1}
{>}r := 2{r ≥ 2} r ≥ 2⇒ r ≥ 1

{>}r := 2{r ≥ 1}
{>}r := 1[]r := 2{r ≥ 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 31

Hoare proof system – loop statement

[WhileRule]
{I ∧ F}c{I}

{I}while(F) c{¬F ∧ I}

Usually, the loop is sitting between a pre and post, i.e.,

{pre}while(F) c{post}.

We need I such that we can prove the antecedent of WhileRule and after
weakening we obtain the pre and post. The proof will flow as follows.

pre ⇒ I

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I} ¬F ∧ I⇒ post

{pre}while(F) c{post}

Non-mechanical step:
invent I such that the above works. I is called loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 32

Example: Hoare proof

Example 3.13

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}
r := 1;
{r = 1}
i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}
i := i + 1
}
{r = 2z + 1}

{>}r := 1{r = 1} {r = 1}i := 1{I}
{>}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{P5 , i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}
{I}while(..)..{I ∧ i ≥ 3}

{>}r := 1; i := 1; {I} {I}while(..)..{I ∧ i ≥ 3}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>} r := 1; ..; while(..)..︸ ︷︷ ︸
full program

{r = 2z + 1}

Commentary: Rule names are not explicitly written. Most of them should be clear by their context. The last application may be
confusion, which is due to[ConseqRule]. The proof is detached at the red and blue triples for space saving.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 33

Topic 3.3

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 34

Exercise: sp vs wp

Exercise 3.10
Prove that sp(wp(F , c), c) ⊆ F ⊆ wp(sp(F , c), c)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 35

Exercise: Post using z3

Exercise 3.11
Write a C++ program that reads a SMT2 formula from command line and
performs quantifier elimination using Z3 for the variables that do not end
with ’

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 36

Exercise: Hoare triple

Exercise 3.12
Prove the following Hoare triple is valid

{true}

assume( n > 1);

i = n;

x = 0;

while(i > 0) {

x = x + i;

i = i - 1;

}

{ 2x = n*(n+1) }

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 37

Exercise: translating to Hoare triple

Exercise 3.13
Consider the following program. Use Hoare logic to prove the program
correct.

int main( int n ) {

assume( p == 0 );

while( n > 0 ) {

assert( p != 0 );

if( n== 0 ) {

p = 0;

}

n--;

}

}

Note that assert is not at the every end of the program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 38

End of Lecture 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Weakest precondition
	Hoare logic
	Problems

