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Topic 4.1

Program as labeled transition system
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A more convenient program model

I Simple language has many cases to write an algorithm
I or any other language, we may consider

I automata like program models allow more succinct description of
verification methods

I Let us look one of those.
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Program as labeled transition system (LTS)

Definition 4.1
A program P is a tuple

(V , L, `0, `e,E ),
where

I V is a vector of variables,

I L be set of program locations,

I `0 ∈ L is initial location,

I `e ∈ L is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.
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Example: LTS

Example 4.1

Consider an LTS P = {[x], {`0, `1, `e}, `0, `e ,E}

`0

`1

`e

x ′ = 1

x ′ = x + 2

x < 0 ∧ x ′ = x

E = { (`0, x
′ = 1, `1), (`1, x

′ = x + 2, `1), (`1, x < 0 ∧ x′ = x, `e) }

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Shorthand notation for handling transitions

If e = (`, ρ(V ,V ′), `′) ∈ E , then let us define

e(V ,V ′) , ρ(V ,V ′), e(loc) , `, and e(loc ′) , `′.

Example 4.2

Let e = (`1, x
′ = x + 2, `2) ∈ E.

e(V ,V ′) denotes x′ = x + 2.

e(loc) denotes `1.

e(loc ′) denotes `2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cumbersome labels

The labels in LTS are cumbersome to write.

Example 4.3

Let V = [x, y, z].

For statement x := 1, we have to add the following label in LTS.

x′ = 1 ∧ y′ = y ∧ z′ = z.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Guarded command

Definition 4.2
A guarded command is a pair of

I a formula in Σ(V ) and (called guard)

I a sequence of update constraints (including havoc) of variables in V .
(called command)

Example 4.4

Let V = [x, y, z].

(x > y, [x := x + 1, z := havoc()]) is a guarded command.

The formula represented by the guarded command is

x > y ∧ x′ = x + 1 ∧ y′ = y.
Guarded command is
a convenient way of
writing transitions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: guarded command

Example 4.5

`0

`1

`e

x ′ = 1

x ′ = x + 2

x < 0 ∧ x ′ = x

`0

`1

`e

(>, [x := 1])

(>, [x := x + 2])

(x < 0, [])

LTS with formulas LTS with guarded commands

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Further shorthanded view

Example 4.6

`0

`1

`e

(>, [x := 1])

(>, [x := x + 2])

(x < 0, [])

`0

`1

`e

x := 1

x := x + 2

x < 0

Guarded command Simplified guarded commands

Trivial, guards and updates need not be explicitly written.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Semantics: state of LTS
Consider program P = (V , L, `0, `e ,E ).

Definition 4.3
A state s = (`, v) of a program is program location ` and a valuation v of V .

Notation:
Let v(x) , value of variable x in v .
For state s = (`, v), let s(x) ,v(x) and s(loc) ,`.

Example 4.7

`0

`1

`e

x := 1

x := x + 2

x < 0

(`1, [2]) is a state.

s = (`e , [19]) is a state.

We will write s(x) = 19 and s(loc) = `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Path

Definition 4.4
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n,

ei = (`i−1, , `i ) and ei+1 = (`i , , `i+1).

Example 4.8

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

(`0, x := 1, `1), (`1, x := x+ 2, `1) is a path.
(`1, x < 0, `e) is a path.

Exercise 4.1
Is the following a path of P?

I (`0, x < 0, `e)

I (`1, x := x + 2, `1), (`0, x := 1, `1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Execution of paths

Definition 4.5
An execution corresponding to path π = e1, . . . , en is a sequence of states

(`0, v0), . . . , (`n, vn)

such that ∀i ∈ 1..n, ei (vi−1, vi ) holds true.

Example 4.9

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

Path (`0, x := 1, `1), (`1, x := x+ 2, `1) has
the following execution.

(`0, [−234]), (`1, [1]), (`1, [3])

Exercise 4.2
Give an execution for a path that
reaches `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Feasibility of paths

Definition 4.6
A path π = e1, . . . , en is feasible if there is an execution corresponding to the
path.

Example 4.10

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

Path (`0, x := 1, `1), (`1, x := x + 2, `1) is
feasible, since we have seen an execution
along the path.

Exercise 4.3
Give an infeasible path?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Execution of program

Definition 4.7
An execution s0, ..., sn belongs to P if

I s0(loc) = `0 and

I there is a corresponding path in P.

Example 4.11

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

(`0, [−234]), (`1, [1]), (`1, [3]) is an execu-
tion of P and the corresponding path is

(`0, x := 1, `1), (`1, x := x + 2, `1).

Exercise 4.4
Give an execution of P that reaches `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Safety in LTS

Definition 4.8
P is safe if there is no execution of P that reaches to `e .

Example 4.12

The following program is safe

`0

`1

`e

x := 1

x := x + 2

x < 0

Example 4.13

The following program is not safe

`0

`1

`e

x := 1

x := x + 2

x > 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Path constraints

Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 4.9
For a path π = e1, . . . , en, path constraints ρ(π) is∧

i∈1..n
ei (Vi−1,Vi ).

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: path constraints

Example 4.14

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1)︸ ︷︷ ︸

e1

, (`1, x := x + 2, `1)︸ ︷︷ ︸
e2

, (`1, x < 0, `e)︸ ︷︷ ︸
e3

.

Path constraint for the path is

ρ(e1e2e3) = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0 ∧ x3 = x2).

Since F is unsat, there is no execution along the path.

Exercise 4.5
Give ρ(e1e2e2)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Path constraints feasible

Theorem 4.1
If path constraints of a path is satisfiable, then there is an execution that
corresponds to the path.

Proof.
We can easily generate the execution from the satisfying assignment.

Example 4.15

Consider path constraints for ρ(e1e2e2) in our running example

ρ(e1e2e2) = (x1 = 1 ∧ x2 = x1 + 2 ∧ x3 = x2 + 2).

A satisfying assignment to ρ(e1e2e2) is

{x0 → −12030, x1 → 1, x2 → 3, x3 → 5}.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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symbolic strongest post over edges

Recall,
sp : Σ(V )× Σ(V ,V ′)→ Σ(V )

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V . F (V ) ∧ ρ(V ,V ′))[V /V ′]

Using polymorphism, we also define sp over edges of LTSs.

Definition 4.10

sp( (`,F )︸ ︷︷ ︸
symbolic state

, (`, ρ, `′)︸ ︷︷ ︸
edge

) , (`′, sp(F , ρ))︸ ︷︷ ︸
Nextsymbolicstate

.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Symbolic strongest post over paths

Definition 4.11
For path π = e1, .., en of P,

sp((`,F ), π) , sp(...sp((`,F ), e1), ...en).

Let us expand out sp((`,F ), π)

(∃V . ...(∃V . (∃V . F (V ) ∧ e1(V ,V ′))[V /V ′] ∧ e2(V ,V ′))[V /V ′]...)[V /V ′]

We get away with the renaming if use different name in quantifier everytime

(∃Vn−1. ...(∃V1. (∃V0. F (V0) ∧ e1(V0,V1)) ∧ e2(V1,V2))......)[V /Vn]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 22

Symbolic strongest post over paths

If we pull all the quantifiers in front

(∃Vn−1...V0. F (V0) ∧ e1(V0,V1) ∧ e2(V1,V2)......︸ ︷︷ ︸
Path constraints of π

)[V /Vn]

Therefore,

sp((`,F ), π) = (∃Vn−1...V0. F (V0) ∧ ρ(π))[V /Vn]

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Strongest post and implication

For a path π = e1, ...en, let us suppose we want to check Hoare triple
{P}π{Q}.

We need to implement
∀V . sp(P, π)⇒ Q.

Let us expand sp.

∀V . (∃Vn−1...V0. P(V0) ∧ ρ(π))[V /Vn]⇒ Q.

Again by renaming quantifiers, we get rid of explicit renamings.

∀Vn. (∃Vn−1...V0. P(V0) ∧ ρ(π))⇒ Q(Vn).

To prove the above is true, we can prove the following negation false.

∃Vn. (∃Vn−1...V0. P(V0) ∧ ρ(π)) ∧ ¬Q(Vn).

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Statement post and implement II

After flattening the quantifiers, we obtain

∃Vn...V0. P(V0) ∧ ρ(π) ∧ ¬Q(Vn).

All we need to show that the following formula is unsatisfiable.

P(V0) ∧ ρ(π) ∧ ¬Q(Vn).

We only need a satisfiability solver to check validity of a Hoare triple over a
straight line program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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From simple language to labelled transition system

Theorem 4.2
Simple programming language is isomorphic to the labelled transition systems

Proof.
We show it by an example.

Example 4.16

L0: i = 0;

L1: while( x < 10 ) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert( i >= 0 )

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cut-points

Definition 4.12
For a program P = (V , L, `0, `e ,E ), CutPoints(P) is the a minimal subset
of L such that every path of P containing a loop passes through one of the
location in CutPoints(P).

Typically, CutPoints(P) in LTS are loop heads in simple language.

There may not be a unique cutpoint set.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: cut-points

Example 4.17

Consider the following program P.

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

x := x + 1

`5

x ≥ 10

`e

i < 0

CutPoints(P) = {`1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 28

Exercise: cut-points

Exercise 4.6
Give a set of cut-points for the following programs.

`0

`1

`2

`e

Sequential loops

`0

`1 `2

`e

Nested loops

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 4.2

Loop invariants
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Invariants

Definition 4.13
For P, a map I : L→ Σ(V ) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 4.14
For P, a map I : L→ Σ(V ) is called inductive if, for each (`, ρ, `′) ∈ E,

sp(I(`), ρ)⇒ I(`′).

Definition 4.15
For P, a map I : L→ Σ(V ) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 4.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 4.7
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cut-point invariant maps
Let P be a program and C = CutPoints(P) ∪ {`0, `e}.

Definition 4.16
A map I : C → Σ(V ) is called cut-point invariant map if, for each ` ∈ C, all
reachable states at ` satisfy I(`).

Definition 4.17
A map I : C → Σ(V ) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 4.18
A map I : C → Σ(V ) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 4.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Annotated verification: VCC demo

http://rise4fun.com/Vcc

Exercise 4.8
Complete the following program such that Vcc proves it correct

#include <vcc.h>

int main()

{

int x, y;

_(assume x > y +3 && x < 3000 )

while( 0 < y ) _(invariant ....) {

x = x + 1;

y = y -1;

}

_(assert x >= y)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Exercise: Invariants guess and check

Example 4.18

Fill the annotations to prove following program correct via Vcc

#include <vcc.h>

int main()

{

int x = 0, y = 2;

_(assume 1==1 )

while( x < 3 ) _(invariant ... ) {

x = x + 1;

y = 3;

}

_(assert y == 3)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Annotated verification

I There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

I Rest of the verification is done as discussed in earlier slides

I User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 4.3

Problems
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Exercise: bubble sort

Exercise 4.9
Write inductive invariants at the loop heads in the bubble sort such that they
prove that at the end array is sorted and the content is preserved.

procedure bubbleSort( A : list of sortable items )

n = length(A)

repeat

swapped = false

for i = 1 to n-1 inclusive do

if A[i-1] > A[i] then

swap( A[i-1], A[i] )

swapped = true

end if

end for

until not swapped

end procedure

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Exercise: merge sort

Exercise 4.10
Write inductive invariants at the loop heads in the merge sort such that they
prove that at the end array is sorted and the content is preserved.

function merge_sort(list m)

if length of m <= 1 then

return m

var left := empty list

var right := empty list

for each x with index i in m do

if i =< (length of m)/2 then

add x to left

else

add x to right

left := merge_sort(left)

right := merge_sort(right)

return merge(left, right)

function merge(left, right)

var result := empty list

while left is not empty and right is not empty do

if first(left) =< first(right) then

append first(left) to result

left := rest(left)

else

append first(right) to result

right := rest(right)

while left is not empty do

append first(left) to result

left := rest(left)

while right is not empty do

append first(right) to result

right := rest(right)

return result

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Exercise: strange array properties

Exercise 4.11
Write inductive loop invariants for the following program that prove the
following property.

int main ( int A[ N ] , int B[ N ] , int C[ N ] ) {

int i;

int j = 0;

for (i = 0; i < N ; i++) {

if ( A[i] == B[i] ) {

C[j] = i;

j = j + 1;

}

}

assert( forall x: ( 0 <= x < j ) ==> ( C[x] <= x + i - j ) );

assert( forall x: ( 0 <= x < j ) ==> ( C[x] >= x ) );

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 4.4

Bonus slides: Constraint based invariant generation
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Invariant generation using constraint solving

Invariant generation: find a safe inductive invariant map I

I This is our first method that computes the fixed point automatically
without resorting to some kind of enumeration
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Templates

Let L = {l0, . . . , ln, le},
Let V = {x1, . . . , xm}

We assume the following templates for each invariant in the invariant map.

I(l0) = 0 ≤ 0

∀i ∈ 1..n. I(li ) = (pi1x1 + . . . pimxm ≤ pi0)

I(le) = 0 ≤ −1

pij are called parameters to the templates and they define a set of candidate
invariants.
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Constraint generation

A safe inductive invariant map I must satisfy for all (li , ρ, li ′) ∈ E

sp(I(li ), ρ)⇒ I(li ′).

The above condition translates to

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x
′
1 + . . . pi ′mx

′
m ≤ pi ′0)

Our goal is to find pijs such that the above constraints are satisfied.
Unfortunately there is quantifier alternation in the constraints. Therefore,
they are hard to solve.
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Constraint solving using Farkas lemma

If all ρs are linear constraints then we can use Farkas lemma to turn the
validity question into a “conjunctive satisfiablity question”

Lemma 4.1
For a rational matrix A, vectors a and b, and constant c,
∀X . AX ≤ b ⇒ aX ≤ c iff
∃λ ≥ 0. λTA = a and λTb ≤ c
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Application of farkas lemma

Consider (li , (AV + A′V ≤ b), li ′) ∈ E

After applying Farkas lemma on

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x
′
1 + . . . pi ′mx

′
m ≤ pi ′0),

we obtain

∃λ0, λ. (λ0[pi1, . . . , pim] + λTA) = 0 ∧ λTA′ = [pi ′1, . . . , pi ′m]∧
λ0pi0 + λTb ≤ pi ′0

All the variables pijs and λs are existentially quantified, which can be solved
by a quadratic constraints solver.
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Example: invariant generation

Example 4.19

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥
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Example: invariant generation(contd.)

Now consider the second constraint:
∀x, y, x′, y′.
(p1x + p2y ≤ p0) ∧ y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1 ⇒ (p1x

′ + p2y
′ ≤ p0)

Matrix view of the transition relation y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1




x

y

x′

y′

 ≤


10
1
−1
−1
1


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Example: invariant generation(contd.)
Applying farkas lemma on the constraint, we obtain

[
λ0 λ1 λ2 λ3 λ4 λ5

]


p1 p2 0 0
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1

 =
[

0 0 p1 p2
]

[
λ0 λ1 λ2 λ3 λ4 λ5

]


p0
10
1
−1
−1
1

 ≤
[
p0
]

Exercise 4.12
Apply farkas lemma on the other two implications
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥
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Does this method work?

I Quadratic constraint solving does not scale

I For small tricky problems, this method may prove to be useful
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End of Lecture 4
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