
cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent
programs 2020

Lecture 4: Labeled transition systems and invariants

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-01-27

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 2

Topic 4.1

Program as labeled transition system

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 3

A more convenient program model

I Simple language has many cases to write an algorithm
I or any other language, we may consider

I automata like program models allow more succinct description of
verification methods

I Let us look one of those.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 4

Program as labeled transition system (LTS)

Definition 4.1
A program P is a tuple

(V , L, `0, `e,E),
where

I V is a vector of variables,

I L be set of program locations,

I `0 ∈ L is initial location,

I `e ∈ L is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 5

Example: LTS

Example 4.1

Consider an LTS P = {[x], {`0, `1, `e}, `0, `e ,E}

`0

`1

`e

x ′ = 1

x ′ = x + 2

x < 0 ∧ x ′ = x

E = { (`0, x
′ = 1, `1), (`1, x

′ = x + 2, `1), (`1, x < 0 ∧ x′ = x, `e) }

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 6

Shorthand notation for handling transitions

If e = (`, ρ(V ,V ′), `′) ∈ E , then let us define

e(V ,V ′) , ρ(V ,V ′), e(loc) , `, and e(loc ′) , `′.

Example 4.2

Let e = (`1, x
′ = x + 2, `2) ∈ E.

e(V ,V ′) denotes x′ = x + 2.

e(loc) denotes `1.

e(loc ′) denotes `2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 7

Cumbersome labels

The labels in LTS are cumbersome to write.

Example 4.3

Let V = [x, y, z].

For statement x := 1, we have to add the following label in LTS.

x′ = 1 ∧ y′ = y ∧ z′ = z.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 8

Guarded command

Definition 4.2
A guarded command is a pair of

I a formula in Σ(V) and (called guard)

I a sequence of update constraints (including havoc) of variables in V .
(called command)

Example 4.4

Let V = [x, y, z].

(x > y, [x := x + 1, z := havoc()]) is a guarded command.

The formula represented by the guarded command is

x > y ∧ x′ = x + 1 ∧ y′ = y.
Guarded command is
a convenient way of
writing transitions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 9

Example: guarded command

Example 4.5

`0

`1

`e

x ′ = 1

x ′ = x + 2

x < 0 ∧ x ′ = x

`0

`1

`e

(>, [x := 1])

(>, [x := x + 2])

(x < 0, [])

LTS with formulas LTS with guarded commands

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 10

Further shorthanded view

Example 4.6

`0

`1

`e

(>, [x := 1])

(>, [x := x + 2])

(x < 0, [])

`0

`1

`e

x := 1

x := x + 2

x < 0

Guarded command Simplified guarded commands

Trivial, guards and updates need not be explicitly written.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 11

Semantics: state of LTS
Consider program P = (V , L, `0, `e ,E).

Definition 4.3
A state s = (`, v) of a program is program location ` and a valuation v of V .

Notation:
Let v(x) , value of variable x in v .
For state s = (`, v), let s(x) ,v(x) and s(loc) ,`.

Example 4.7

`0

`1

`e

x := 1

x := x + 2

x < 0

(`1, [2]) is a state.

s = (`e , [19]) is a state.

We will write s(x) = 19 and s(loc) = `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 12

Path

Definition 4.4
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n,

ei = (`i−1, , `i) and ei+1 = (`i , , `i+1).

Example 4.8

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

(`0, x := 1, `1), (`1, x := x+ 2, `1) is a path.
(`1, x < 0, `e) is a path.

Exercise 4.1
Is the following a path of P?

I (`0, x < 0, `e)

I (`1, x := x + 2, `1), (`0, x := 1, `1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 13

Execution of paths

Definition 4.5
An execution corresponding to path π = e1, . . . , en is a sequence of states

(`0, v0), . . . , (`n, vn)

such that ∀i ∈ 1..n, ei (vi−1, vi) holds true.

Example 4.9

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

Path (`0, x := 1, `1), (`1, x := x+ 2, `1) has
the following execution.

(`0, [−234]), (`1, [1]), (`1, [3])

Exercise 4.2
Give an execution for a path that
reaches `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 14

Feasibility of paths

Definition 4.6
A path π = e1, . . . , en is feasible if there is an execution corresponding to the
path.

Example 4.10

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

Path (`0, x := 1, `1), (`1, x := x + 2, `1) is
feasible, since we have seen an execution
along the path.

Exercise 4.3
Give an infeasible path?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 15

Execution of program

Definition 4.7
An execution s0, ..., sn belongs to P if

I s0(loc) = `0 and

I there is a corresponding path in P.

Example 4.11

Consider the following program P.

`0

`1

`e

x := 1

x := x + 2

x < 0

(`0, [−234]), (`1, [1]), (`1, [3]) is an execu-
tion of P and the corresponding path is

(`0, x := 1, `1), (`1, x := x + 2, `1).

Exercise 4.4
Give an execution of P that reaches `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 16

Safety in LTS

Definition 4.8
P is safe if there is no execution of P that reaches to `e .

Example 4.12

The following program is safe

`0

`1

`e

x := 1

x := x + 2

x < 0

Example 4.13

The following program is not safe

`0

`1

`e

x := 1

x := x + 2

x > 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 17

Path constraints

Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 4.9
For a path π = e1, . . . , en, path constraints ρ(π) is∧

i∈1..n
ei (Vi−1,Vi).

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 18

Example: path constraints

Example 4.14

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1)︸ ︷︷ ︸

e1

, (`1, x := x + 2, `1)︸ ︷︷ ︸
e2

, (`1, x < 0, `e)︸ ︷︷ ︸
e3

.

Path constraint for the path is

ρ(e1e2e3) = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0 ∧ x3 = x2).

Since F is unsat, there is no execution along the path.

Exercise 4.5
Give ρ(e1e2e2)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 19

Path constraints feasible

Theorem 4.1
If path constraints of a path is satisfiable, then there is an execution that
corresponds to the path.

Proof.
We can easily generate the execution from the satisfying assignment.

Example 4.15

Consider path constraints for ρ(e1e2e2) in our running example

ρ(e1e2e2) = (x1 = 1 ∧ x2 = x1 + 2 ∧ x3 = x2 + 2).

A satisfying assignment to ρ(e1e2e2) is

{x0 → −12030, x1 → 1, x2 → 3, x3 → 5}.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 20

symbolic strongest post over edges

Recall,
sp : Σ(V)× Σ(V ,V ′)→ Σ(V)

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V . F (V) ∧ ρ(V ,V ′))[V /V ′]

Using polymorphism, we also define sp over edges of LTSs.

Definition 4.10

sp((`,F)︸ ︷︷ ︸
symbolic state

, (`, ρ, `′)︸ ︷︷ ︸
edge

) , (`′, sp(F , ρ))︸ ︷︷ ︸
Nextsymbolicstate

.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 21

Symbolic strongest post over paths

Definition 4.11
For path π = e1, .., en of P,

sp((`,F), π) , sp(...sp((`,F), e1), ...en).

Let us expand out sp((`,F), π)

(∃V(∃V . (∃V . F (V) ∧ e1(V ,V ′))[V /V ′] ∧ e2(V ,V ′))[V /V ′]...)[V /V ′]

We get away with the renaming if use different name in quantifier everytime

(∃Vn−1. ...(∃V1. (∃V0. F (V0) ∧ e1(V0,V1)) ∧ e2(V1,V2))......)[V /Vn]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 22

Symbolic strongest post over paths

If we pull all the quantifiers in front

(∃Vn−1...V0. F (V0) ∧ e1(V0,V1) ∧ e2(V1,V2)......︸ ︷︷ ︸
Path constraints of π

)[V /Vn]

Therefore,

sp((`,F), π) = (∃Vn−1...V0. F (V0) ∧ ρ(π))[V /Vn]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 23

Strongest post and implication

For a path π = e1, ...en, let us suppose we want to check Hoare triple
{P}π{Q}.

We need to implement
∀V . sp(P, π)⇒ Q.

Let us expand sp.

∀V . (∃Vn−1...V0. P(V0) ∧ ρ(π))[V /Vn]⇒ Q.

Again by renaming quantifiers, we get rid of explicit renamings.

∀Vn. (∃Vn−1...V0. P(V0) ∧ ρ(π))⇒ Q(Vn).

To prove the above is true, we can prove the following negation false.

∃Vn. (∃Vn−1...V0. P(V0) ∧ ρ(π)) ∧ ¬Q(Vn).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 24

Statement post and implement II

After flattening the quantifiers, we obtain

∃Vn...V0. P(V0) ∧ ρ(π) ∧ ¬Q(Vn).

All we need to show that the following formula is unsatisfiable.

P(V0) ∧ ρ(π) ∧ ¬Q(Vn).

We only need a satisfiability solver to check validity of a Hoare triple over a
straight line program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 25

From simple language to labelled transition system

Theorem 4.2
Simple programming language is isomorphic to the labelled transition systems

Proof.
We show it by an example.

Example 4.16

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 26

Cut-points

Definition 4.12
For a program P = (V , L, `0, `e ,E), CutPoints(P) is the a minimal subset
of L such that every path of P containing a loop passes through one of the
location in CutPoints(P).

Typically, CutPoints(P) in LTS are loop heads in simple language.

There may not be a unique cutpoint set.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 27

Example: cut-points

Example 4.17

Consider the following program P.

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

x := x + 1

`5

x ≥ 10

`e

i < 0

CutPoints(P) = {`1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 28

Exercise: cut-points

Exercise 4.6
Give a set of cut-points for the following programs.

`0

`1

`2

`e

Sequential loops

`0

`1 `2

`e

Nested loops

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 29

Topic 4.2

Loop invariants

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 30

Invariants

Definition 4.13
For P, a map I : L→ Σ(V) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 4.14
For P, a map I : L→ Σ(V) is called inductive if, for each (`, ρ, `′) ∈ E,

sp(I(`), ρ)⇒ I(`′).

Definition 4.15
For P, a map I : L→ Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 4.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 4.7
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 31

Cut-point invariant maps
Let P be a program and C = CutPoints(P) ∪ {`0, `e}.

Definition 4.16
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C, all
reachable states at ` satisfy I(`).

Definition 4.17
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 4.18
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 4.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 32

Annotated verification: VCC demo

http://rise4fun.com/Vcc

Exercise 4.8
Complete the following program such that Vcc proves it correct

#include <vcc.h>

int main()

{

int x, y;

_(assume x > y +3 && x < 3000)

while(0 < y) _(invariant) {

x = x + 1;

y = y -1;

}

_(assert x >= y)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://rise4fun.com/Vcc

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 33

Exercise: Invariants guess and check

Example 4.18

Fill the annotations to prove following program correct via Vcc

#include <vcc.h>

int main()

{

int x = 0, y = 2;

_(assume 1==1)

while(x < 3) _(invariant ...) {

x = x + 1;

y = 3;

}

_(assert y == 3)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 34

Annotated verification

I There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

I Rest of the verification is done as discussed in earlier slides

I User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 35

Topic 4.3

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 36

Exercise: bubble sort

Exercise 4.9
Write inductive invariants at the loop heads in the bubble sort such that they
prove that at the end array is sorted and the content is preserved.

procedure bubbleSort(A : list of sortable items)

n = length(A)

repeat

swapped = false

for i = 1 to n-1 inclusive do

if A[i-1] > A[i] then

swap(A[i-1], A[i])

swapped = true

end if

end for

until not swapped

end procedure

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 37

Exercise: merge sort

Exercise 4.10
Write inductive invariants at the loop heads in the merge sort such that they
prove that at the end array is sorted and the content is preserved.

function merge_sort(list m)

if length of m <= 1 then

return m

var left := empty list

var right := empty list

for each x with index i in m do

if i =< (length of m)/2 then

add x to left

else

add x to right

left := merge_sort(left)

right := merge_sort(right)

return merge(left, right)

function merge(left, right)

var result := empty list

while left is not empty and right is not empty do

if first(left) =< first(right) then

append first(left) to result

left := rest(left)

else

append first(right) to result

right := rest(right)

while left is not empty do

append first(left) to result

left := rest(left)

while right is not empty do

append first(right) to result

right := rest(right)

return result

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 38

Exercise: strange array properties

Exercise 4.11
Write inductive loop invariants for the following program that prove the
following property.

int main (int A[N] , int B[N] , int C[N]) {

int i;

int j = 0;

for (i = 0; i < N ; i++) {

if (A[i] == B[i]) {

C[j] = i;

j = j + 1;

}

}

assert(forall x: (0 <= x < j) ==> (C[x] <= x + i - j));

assert(forall x: (0 <= x < j) ==> (C[x] >= x));

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 39

Topic 4.4

Bonus slides: Constraint based invariant generation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 40

Invariant generation using constraint solving

Invariant generation: find a safe inductive invariant map I

I This is our first method that computes the fixed point automatically
without resorting to some kind of enumeration

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 41

Templates

Let L = {l0, . . . , ln, le},
Let V = {x1, . . . , xm}

We assume the following templates for each invariant in the invariant map.

I(l0) = 0 ≤ 0

∀i ∈ 1..n. I(li) = (pi1x1 + . . . pimxm ≤ pi0)

I(le) = 0 ≤ −1

pij are called parameters to the templates and they define a set of candidate
invariants.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 42

Constraint generation

A safe inductive invariant map I must satisfy for all (li , ρ, li ′) ∈ E

sp(I(li), ρ)⇒ I(li ′).

The above condition translates to

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x
′
1 + . . . pi ′mx

′
m ≤ pi ′0)

Our goal is to find pijs such that the above constraints are satisfied.
Unfortunately there is quantifier alternation in the constraints. Therefore,
they are hard to solve.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 43

Constraint solving using Farkas lemma

If all ρs are linear constraints then we can use Farkas lemma to turn the
validity question into a “conjunctive satisfiablity question”

Lemma 4.1
For a rational matrix A, vectors a and b, and constant c,
∀X . AX ≤ b ⇒ aX ≤ c iff
∃λ ≥ 0. λTA = a and λTb ≤ c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 44

Application of farkas lemma

Consider (li , (AV + A′V ≤ b), li ′) ∈ E

After applying Farkas lemma on

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x
′
1 + . . . pi ′mx

′
m ≤ pi ′0),

we obtain

∃λ0, λ. (λ0[pi1, . . . , pim] + λTA) = 0 ∧ λTA′ = [pi ′1, . . . , pi ′m]∧
λ0pi0 + λTb ≤ pi ′0

All the variables pijs and λs are existentially quantified, which can be solved
by a quadratic constraints solver.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 45

Example: invariant generation

Example 4.19

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 46

Example: invariant generation(contd.)

Now consider the second constraint:
∀x, y, x′, y′.
(p1x + p2y ≤ p0) ∧ y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1 ⇒ (p1x

′ + p2y
′ ≤ p0)

Matrix view of the transition relation y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1




x

y

x′

y′

 ≤


10
1
−1
−1
1



http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 47

Example: invariant generation(contd.)
Applying farkas lemma on the constraint, we obtain

[
λ0 λ1 λ2 λ3 λ4 λ5

]


p1 p2 0 0
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1

 =
[

0 0 p1 p2
]

[
λ0 λ1 λ2 λ3 λ4 λ5

]


p0
10
1
−1
−1
1

 ≤
[
p0
]

Exercise 4.12
Apply farkas lemma on the other two implications
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 48

Does this method work?

I Quadratic constraint solving does not scale

I For small tricky problems, this method may prove to be useful

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 49

End of Lecture 4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Program as labeled transition system
	Loop invariants
	Problems
	Bonus slides: Constraint based invariant generation

