
cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent
programs 2020

Lecture 20: Counterexample guided abstraction
refinement
(CEGAR)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-02-04

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 2

Limitations of symbolic model checking

I Too precise

I Often does not scale!

I Approximations like BMC or concolic testing have sever limitations

Let us bring back abstraction!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 3

Topic 20.1

Recall: abstract domain and abstract post

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 4

Recall: Abstract domain

Definition 20.1
Concrete objects of analysis or domain — C = p(QV)

I not all sets are concisely representable in computer

I too (infinitely) many of them

Definition 20.2
Abstract domain — only simple to represent sets D ⊆ C

I D should allow efficient algorithms for desired operations

I far fewer, but possibly infinitely many

I Sets in C \ D are not precisely representable in D

Definition 20.3
An abstraction function α : C → D maps each set c ∈ C to α(c).

Definition 20.4
A concretization function γ : D → C maps each set d ∈ D to d.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 5

Recall: Example: abstraction – intervals

Example 20.1

Let us assume V = {x}

Consider D = {⊥,>} ∪ {[a, b]|a, b ∈ Q}.

Ordering among elements of D are defined as follows:
⊥ v [a, b] v > and [a1, b1] v [a2, b2]⇔ a2 ≤ a1 ∧ b1 ≤ b2

Let α(c) , [inf (c), sup(c)] and γ([a, b]) , [a, b]

Exercise 20.1
Give the following value
I α({0, 3, 5}) =

I α((0, 3)) =

I α([0, 3] ∪ [5, 6]) =

I α({1/x |x ≥ 1}) =

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 6

Abstract operations

Let us suppose we have the following abstract domain

(C ,⊆) −−−→←−−−α
γ

(D,v).

Let us suppose we also have a function f : Cn → C in concrete domain C .

Definition 20.5
We define an abstract operation f # : Dn → D as follows

f #(d1, . . . , dn) = α◦f (γ(d1), . . . , γ(dn))

C D

d1...
dn

. . . γ

γf

f #(d1, . . . , dn)
α

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 7

Example: abstract operation

We use f , α, and γ to implement f #. For example,

I We may implement t as follows

x t y = α(γ(x) ∪ γ(y))

I We may implement u as follows

x u y = α(γ(x) ∩ γ(y))

Example 20.2

Consider interval domain. Let us compute [0, 3] t [8, 11].

I [0, 3] t [8, 11] = α(γ([0, 3]) ∪ γ([8, 11])) = α([0, 3] ∪ [8, 11]) = [0, 11]

Commentary: The t computation may look a simple thing made complex. However, the above captures the idea that the function
calculation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 8

Abstract strongest post
Recall from earlier lecture, we discussed abstract post. Now we have the
formal definition.

sp#(d , ρ) = α◦sp(γ(d), ρ)

Example 20.3 (Reminder)

Recall the following abstraction function

wideOne(X) = {n + 1, n|n ∈ X}

We defined the following abstract post

sp#(F , ρ) = wideOne︸ ︷︷ ︸
α

(sp(F︸︷︷︸
γ is identity

, ρ))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 9

Topic 20.2

Abstract model checking

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 10

Abstract program

Definition 20.6
Let us consider a finite abstraction D and a program P = (V , L, `0, `e ,E).
An abstract program P# = Abstract(P,D) is (V , L, `0, `e ,E

#) where E#

is defined as follows.

If (`, ρ, `′) ∈ E then (`, ρ#, `′) ∈ E#, where

ρ# = {γ(d)× γ(d ′)|d ′ = sp#(d , ρ)}.

d1 d2

ρ#

ρ

We assume D and P allow ρ# to be easily representable in a computer.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 11

Properties of abstract programs

Theorem 20.1
∀d ∈ D∃d ′ ∈ D. sp(γ(d), ρ#) = γ(d ′)

In other words, the reachable states of the abstract programs are
representable in D.

Theorem 20.2
If P# is safe then P is safe.

Just analyze the abstract program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 12

Example : abstract edges

Example 20.4

Consider the following edge and sign abstraction D = {>,−, 0,+,⊥}.

ρ1 = (x ′ = 1)

Let us build abstract edge.

I sp#(+, ρ1) = +

I sp#(0, ρ1) = +

I sp#(−, ρ1) = +

I sp#(>, ρ1) = +

I sp#(⊥, ρ1) = ⊥

ρ#1 = {(−,+), (0,+), (+,+), (>,+)}
Exercise 20.2
Give abstraction of ρ2 = (x ′ = x + 1)

No need to record pairs
that start with ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 13

Example: abstract program

Example 20.5

Consider the following program and sign abstraction D = {>,−, 0,+,⊥}.

Program:

`0

`1

`e

x := 1

x < 0

x = x + 2

Abstract
program:

`0

`1

`e

ρ#1

ρ#3

ρ#2

ρ#1 = {(−,+), (0,+), (+,+), (>,+)}
ρ#2 = {(−,>), (0,+), (+,+)

(>,>)}
ρ#3 = {(−,−), (>,−)}

We have only listed pairs that do not
have ⊥ as second component.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 14

Abstract reachability graph

Since D = (v,>,⊥) is finite, symbolic execution of P# = Abstract(P,D)
will produce finitely many symbolic states, which are called abstract states.

Definition 20.7
Abstract reachability graph(ARG) (reach,R) is the smallest directed graph
such that

I reach ⊆ L× D

I (`0,>) ∈ reach

I ((`, d), (`′, d ′)) ∈ R if ∃(`, ρ#, `′) ∈ E#. d ′ = sp(d , ρ#)

Theorem 20.3
If ∀d . d 6= bot ∧ (le , d) 6∈ reach then P# is safe.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 15

Example: abstract reachability graph

Abstract program:

`0

`1

`e

ρ#1

ρ#3

ρ#2

ρ#1 = {(−,+), (0,+), (+,+), (>,+)}
ρ#2 = {(−,+), (−, 0), (−,+), (0,+), (+,+)

(>,>)}
ρ#3 = {(−,−), (>,−)}

Abstract reachability graph:

(`0,>)

(`1,+)

ρ#1

ρ#2

We are not showing abstract states
with ⊥.

Exercise 20.3
Draw the rest of ARG with ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 16

Model checking

The word model checking originated from the area of modal logic, where
finding a model that satisfies a formula is called model checking.

In our situation, we have a logical statement P# is not safe

We search for a model of the statement, i.e., a path in the abstract
reachability graph that reaches to error location.

If no model found, then P# is safe.

Abstract reachability graph may be large.

In contrast, abstract interpretation does not construct large objects.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 17

Abstract model checking

Algorithm 20.1: AbstMC(P# = (V , L, `0, `e ,E
#), D = (v,>,⊥))

Output: Correct if P# is safe, abstract counterexample otherwise
1 worklist := {(`0,>)}; reach := ∅; covered := ∅;
2 parent : reach ∪ worklist → reach ∪ worklist := {((`0,>), (`0,>))};
3 path : reach ∪ worklist → (sequences of E#) := {((`0,>), ε)};
4 while worklist 6= ∅ do
5 choose (`, d) ∈ worklist; worklist := worklist \ {(`, d)};
6 if d = ⊥ or ∃s ∈ parent∗((`, d)). s ∈ covered then continue;
7 if ` = `e then return Counterexample(path(`, d)) ;
8 reach := reach ∪ {(`, d)};
9 if ∃(`, d ′) ∈ reach − range(covered). d v d ′ then

10 covered := covered ∪ {((`, d ′), (`, d))}
11 else
12 if ∃(`, d ′) ∈ reach − range(covered). d ′ v d then
13 covered := covered ∪ {((`, d), (`, d ′))}

14 foreach (`, ρ#, `′) ∈ E# do
15 d ′ := sp(d , ρ#); worklist := worklist ∪ {(`′, d ′)};
16 parent((`′, d ′)) = (`, d);path((`′, d ′)) = path((`, d)).(`, ρ#, `′);

17 return Correct

P# accessed
only once

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 18

On the fly abstraction

In AbstMC, we only access P# to compute post operator over d .

This suggests, AbstMC can be implemented in the following two ways.

I Precompute P# and run AbstMC as presented.

I On the fly construction of P#. We construct transitions of P# as we
need them

Exercise 20.4
Discuss benefits of both the approaches

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 19

Finite abstractions

The following abstractions are widely used in modelcheckers

I Cartesian predicate abstraction

I Boolean predicate abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 20

Finite abstraction example : Cartesian predicate
abstraction

Cartesian predicate abstraction is defined by a set of predicates
Preds = {p1, . . . , pn}
C = p(Q|V |)
D = ⊥ ∪ p(Preds) // ∅ represents >
⊥ v S1 v S2 if S2 ⊆ S1
α(c) = {p ∈ P|c ⇒ p}
γ(S) =

∧
S

Example 20.6

V = {x, y}
P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}
α({(0, 0)}) = {x ≤ 1, y ≤ 5}
α((x− 1)2 + (y− 3)2 = 1) ={−x− y ≤ −1, y ≤ 5}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 21

Representing predicate domain
We represent abstract state as bit vectors.

Example 20.7

Consider V = {x, y} and P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}

Let [101] represent x ≤ 1 ∧ y ≤ 5

Exercise 20.5

I [100] represents ...

I [000] represent ...

I Is [100] v [000]?

I Is [100] v [001]?

I Is [101] v [001]?

I Can we represent false in predicate domain without using special symbol
⊥?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 22

Example: ARG with Cartesian predicate abstraction

Preds = {x ≥ 0, y ≤ 0, x ≥ 1}.

Program:

`0

`1

`2

`e

ρ1 : x := 0
y := 0

ρ2 : x := x + 1
y := y + 1

ρ3 : skip;

ρ4 : x := x − 1
y := y − 1

ρ5 : x < 0 ∧ y > 0

(`0, [000])

(`1, [110])

ρ#1

(`1, [101])

ρ#2

(`1, [101])

ρ#2

cover

(`2, [101])

ρ#3

(`2, [100])

ρ#4

cover

(`2, [000])

ρ#4

cover

(`e , [000])

ρ#5

..
ρ#3

Exercise 20.6
Complete the ARG

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 23

Spurious counterexample

AbstMC(P#, D) may fail to prove P# correct and return a path e#1 . . . e#m ,
which is called abstract counterexample.

Let e1 . . . em be the corresponding path in P. Now we have two possibilities.

I e1 . . . em is feasible. Then, we have found a bug

I e1 . . . em is not feasible. Then, we call e1 . . . em as spurious
counterexample.

We need to fix our abstraction such that we do not get the spurious counter
example.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 24

Example : spurious counterexample

Example 20.8

(`0, [000])

(`1, [110])

ρ#1

(`1, [101])

ρ#2

(`2, [101])

ρ#3

(`2, [100])

ρ#4

(`2, [000])

ρ#4

(`e , [000])

ρ#5

Since we cannot execute ρ1ρ2ρ3ρ4ρ4ρ5, the
path is a spurious counterexample.

We check the feasibility of the path using
satisfiability of path constraints.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 25

Refinement relation

Definition 20.8
Consider abstractions

(C ,⊆) −−−→←−−−
α1

γ1
(D1,v1) and (C ,⊆) −−−→←−−−

α1

γ2
(D2,v2).

D2 refines D1 if
∀c ∈ C . γ1(α1(c)) ⊆ γ2(α2(c))

Exercise 20.7
γ1◦α2 is order embedding.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 26

Abstraction refinement

Theorem 20.4
If Abstract(P,D1) exhibits a spurious counterexample then there is an
abstraction D2 such that D2 refines D1 and Abstract(P,D2) does not
exhibit the same counter example.

Proof sketch.
Spurious counterexample:

d1 d2 d3 d4

e#1 e#2 e#3

Refined abstraction:

d1

d2

d ′
2

d3

d ′
3

d4

e#1 e#2

e#2 e#3

We say the refinement to D2

from D1 ensures progress, i.e.,
counterexamples are not repeated
if ARG is build again with D2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 27

Refinment Strategy for predicate abstraction

General refinement strategy
Split abstract states such that the spurious counterexample is disconnected.

In predicate abstraction, we only need to add more predicates. The new
abstraction will certainly be refinement.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 28

Example: refinement
Adding predicate y ≤ −1 will remove the spurious counterexample.
Preds = {x ≥ 0, y ≤ 0, x ≥ 1, y ≤ 1}

(`0, [0000])

(`1, [1101])

ρ#1

(`1, [1011])

ρ#2

(`2, [1011])

ρ#3

(`2, [1101])

ρ#4

(`2, [0101])

ρ#4

(`e ,⊥)

ρ#5

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 29

CEGAR: CounterExample Guided Abstraction Refinement

Program Abstract Model
initial

abstraction
Model checker

no bug found

property holds

feasibility check

counterexample

successful

bug found
Refinement

spurious

counterexample

refined abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 30

Topic 20.3

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 31

Abstract reachability graph

Exercise 20.8
Choose a set of predicates that will prove the following program correct and
show the ARG of the program using the predicates.

`0

`1

`2

`e

ρ1 : x := 0
y := 1

ρ2 : x := x + 2
y := y + 1

ρ3 : skip;

ρ4 : x := x − 2
y := y − 1

ρ5 : x < 0 ∧ y > 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 32

CPAchecker

Exercise 20.9
Download CPAchecker: https: // cpachecker. sosy-lab. org/
Apply the tool on the following example and report the generated ARG.
int x=0; y=0; z=0; w=0;

while(*)) {

if(*) {

x = x+1;

y = y+100;

}else if (*) {

if (x >= 4) {

x = x+1;

y = y+1;

}

}else if (y > 10*w && z >= 100*x) {

y = -y;

}

w = w+1;

z = z+10;

}

if (x >= 4 && y <= 2)

error();

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://cpachecker.sosy-lab.org/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 33

LTL to Bübhi

Exercise 20.10
Convert the following LTL formula into a Büchi automatom

�♦a ∧ ♦�b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2020 Instructor: Ashutosh Gupta IITB, India 34

End of Lecture 20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Recall: abstract domain and abstract post
	Abstract model checking
	Problems

