
CS 228 : Logic in Computer Science

Krishna. S

1/23

Some Real Life Stories

2/23

Therac-25(1987)

! The Therac-25 : radiation therapy machine produced by Atomic
Energy of Canada Limited (AECL)

3/23

Therac-25(1987)

! The Therac-25 : radiation therapy machine produced by Atomic
Energy of Canada Limited (AECL)

! Involved in at least six accidents, in which patients were given
massive overdoses of radiation, approximately 100 times the
intended dose.

3/23

Therac-25(1987)

! The Therac-25 : radiation therapy machine produced by Atomic
Energy of Canada Limited (AECL)

! Involved in at least six accidents, in which patients were given
massive overdoses of radiation, approximately 100 times the
intended dose.

! Design error in the control software (race condition)

3/23

Intel Pentium Bug (1994)

! The Intel FDIV bug : Bug in the intel P5 floating point unit

4/23

Intel Pentium Bug (1994)

! The Intel FDIV bug : Bug in the intel P5 floating point unit

! Discovered by a professor working on Brun’s constant

! (1
3 + 1

5) + (1
5 + 1

7) + (1
11 + 1

13) + (1
17 + 1

19) + . . . converges to
B ∼= 1.90216054

4/23

Intel Pentium Bug (1994)

! The Intel FDIV bug : Bug in the intel P5 floating point unit

! Discovered by a professor working on Brun’s constant

! (1
3 + 1

5) + (1
5 + 1

7) + (1
11 + 1

13) + (1
17 + 1

19) + . . . converges to
B ∼= 1.90216054

! Intel offered to replace all flawed processors

4/23

Ariane 5 (1996)

! ESA (European Space Agency) Ariane 5 Launcher

5/23

Ariane 5 (1996)

! ESA (European Space Agency) Ariane 5 Launcher

! Shown here in maiden flight on 4th June 1996

5/23

Ariane 5 (1996)

! ESA (European Space Agency) Ariane 5 Launcher

! Shown here in maiden flight on 4th June 1996

! Self destructs 37 secs later

5/23

Ariane 5 (1996)

! ESA (European Space Agency) Ariane 5 Launcher

! Shown here in maiden flight on 4th June 1996

! Self destructs 37 secs later

! uncaught exception: data conversion from 64-bit float to 16-bit
signed int

5/23

Toyota Prius (2010)

! First mass produced hybrid vehicle

6/23

Toyota Prius (2010)

! First mass produced hybrid vehicle
! software “glitch” found in anti-lock braking system
! Eventually fixed via software update in total 185,000 cars recalled,

at huge cost

6/23

Nest Thermostat (2016)

! Nest Thermostat, the smart, learning thermostat from Nest Labs

7/23

Nest Thermostat (2016)

! Nest Thermostat, the smart, learning thermostat from Nest Labs
! software “glitch” led several homes to a frozen state, reported in

NY times, Jan 13, 2016. May be, old fashioned mechanical
thermostats better!

7/23

What do these stories have in
common?

! Programmable computing devices
! conventional computers and networks
! software embedded in devices

8/23

What do these stories have in
common?

! Programmable computing devices
! conventional computers and networks
! software embedded in devices

! Programming error direct cause of failure
! Software critical

! for safety
! for business
! for performance

8/23

What do these stories have in
common?

! Programmable computing devices
! conventional computers and networks
! software embedded in devices

! Programming error direct cause of failure
! Software critical

! for safety
! for business
! for performance

! High costs incurred: financial, loss of life

! Failures avoidable

8/23

Formal Methods

Intuitive Description

“Applied Mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:

9/23

Formal Methods

Intuitive Description

“Applied Mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:

! obtaining an early integration of verification in the design process

9/23

Formal Methods

Intuitive Description

“Applied Mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:

! obtaining an early integration of verification in the design process

! providing more effective verification techniques (higher coverage)

9/23

Formal Methods

Intuitive Description

“Applied Mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:

! obtaining an early integration of verification in the design process

! providing more effective verification techniques (higher coverage)

! reducing the verification time

9/23

Simulation and Testing

Basic procedure

! Take a model

! Simulate it with certain inputs

! Observe what happens, and if this is desired

Important Drawbacks

! possible behaviours very large/infinite

! unexplored behaviours may contain fatal bug

! can show presence of errors, not their absence

10/23

Model Checking

! Year 2008 : ACM confers the Turing Award to the pioneers of
Model Checking: Ed Clarke, Allen Emerson, and Joseph Sifakis

! Why?

11/23

Model checking

! Model checking has evolved in last 25 years into a widely used
verification and debugging technique for software and hardware.

! Cost of not doing formal verification is high!
! The France Telecom example
! Ariane rocket: kaboom due to integer overflow!
! Toyota/Ford recalls

12/23

Model checking

! Model checking has evolved in last 25 years into a widely used
verification and debugging technique for software and hardware.

! Cost of not doing formal verification is high!
! The France Telecom example
! Ariane rocket: kaboom due to integer overflow!
! Toyota/Ford recalls

! Model checking used (and further developed) by
companies/institutes such as IBM, Intel, NASA, Cadence,
Microsoft, and Siemens, and has culminated in many freely
downloadable software tools that allow automated verification.

12/23

What is Model Checking?

System

good/bad properties

specification
satisfy?

13/23

What is Model Checking?

System specification

System Model Spec Model

φ

satisfy?

|=?

model-checking

13/23

Model Checker as a Black Box

! Inputs to Model checker : A finite state system M, and a property
P to be checked.

! Question : Does M satisfy P?
! Possible Outputs

! Yes, M satisfies P
! No, here is a counter example!.

14/23

What are Models?

Transition Systems

! States labeled with propositions

! Transition relation between states

! Action-labeled transitions to facilitate composition

15/23

What are Models?

Transition Systems

! States labeled with propositions

! Transition relation between states

! Action-labeled transitions to facilitate composition

Expressivity

! Programs are transition systems

! Multi-threading programs are transition systems

! Communicating processes are transition systems

! Hardware circuits are transition systems

! What else?

15/23

What are Properties?

Example properties

! Can the system reach a deadlock?

! Can two processes ever be together in a critical section?

! On termination, does a program provide correct output?

16/23

What are Properties?

Example properties

! Can the system reach a deadlock?

! Can two processes ever be together in a critical section?

! On termination, does a program provide correct output?

Logics of Relevance

! Classical Logics
! First Order Logic
! Monadic Second Order Logic

! Temporal Logics
! Propositional Logic, enriched with modal operators such as !

(always) and " (eventually)
! Interpreted over state sequences (linear)
! Or over infinite trees (branching)

16/23

Two Traffic Lights

1. The traffic lights are never green simultaneously
∀x(¬(green1(x) ∧ green2(x))) or !(¬(green1 ∧ green2))

2. The first traffic light is infinitely often green
∀x∃y(x < y ∧ green1(y)) or !"green1

3. Between every two occurrences of traffic light 1 becoming red,
traffic light 2 becomes red once.

17/23

The Model Checking Process

! Modeling Phase
! model the system under consideration
! as a first sanity check, perform some simulations
! formalise property to be checked

18/23

The Model Checking Process

! Modeling Phase
! model the system under consideration
! as a first sanity check, perform some simulations
! formalise property to be checked

! Running Phase
! run the model checker to check the validity of the property in the

model

18/23

The Model Checking Process

! Modeling Phase
! model the system under consideration
! as a first sanity check, perform some simulations
! formalise property to be checked

! Running Phase
! run the model checker to check the validity of the property in the

model

! Analysis Phase
! property satisfied? → check next property (if any)
! property violated? →

! analyse generated counter example by simulation
! refine the model, design, property, . . . and repeat entire procedure

! out of memory? → try to reduce the model and try again

18/23

The Pros of Model Checking

! widely applicable (hardware, software...)

! allows for partial verification (only relevant properties)

! potential “push-button” technology (tools)

! rapidly increasing industrial interest

! in case of property violation, a counter example is provided

! sound mathematical foundations

! not biased to the most possible scenarios (like testing)

19/23

The Cons of Model Checking

! model checking is only as “good” as the system model

! no guarantee about completeness of results (incomplete
specifications)

Neverthless:
Model Checking is an effective technique to expose potential design
errors

20/23

Striking Model-Checking Examples

! Security : Needham-Schroeder encryption protocol
! error that remained undiscovered for 17 years revealed (model

checker SAL)

! Transportation Systems
! Train model containing 1047 states (model checker UPPAAL)

! Model Checkers for C, JAVA, C++
! used (and developed) by Microsoft, Intel, NASA
! successful application area: device drivers (model checker SLAM)

! Dutch storm surge barrier in Nieuwe Waterweg
! Software in current/next generation of space missiles

! NASA’s
! Java Pathfinder, Deep Space Habitat, Lab for Reliable Software

21/23

Relevant Topics

! What are appropriate models?
! from programs, circuits, communication protocols to transition

systems

22/23

Relevant Topics

! What are appropriate models?
! from programs, circuits, communication protocols to transition

systems

! What are properties?
! Safety, Liveness, fairness

22/23

Relevant Topics

! What are appropriate models?
! from programs, circuits, communication protocols to transition

systems

! What are properties?
! Safety, Liveness, fairness

! How to check regular properties?
! finite state automata and regular safety properties
! Buchi automata and ω-regular properties

22/23

Relevant Topics

! How to express properties succintly?
! First Order Logic (FO) : syntax, semantics
! Monadic Second Order Logic (MSO) : syntax, semantics
! Linear-Temporal-Logic (LTL) : syntax, semantics
! What can be expressed in each logic?
! Satisfiability and Model checking : algorithms, complexity

23/23

Relevant Topics

! How to express properties succintly?
! First Order Logic (FO) : syntax, semantics
! Monadic Second Order Logic (MSO) : syntax, semantics
! Linear-Temporal-Logic (LTL) : syntax, semantics
! What can be expressed in each logic?
! Satisfiability and Model checking : algorithms, complexity

! How to make models succint?
! Equivalences and partial-orders on transition systems
! Which properties are preserved?
! Minimization algorithms

23/23

