CS 228 : Logic in Computer Science

Krishna. S

Some Real Life Stories

Therac-25(1987)

 The Therac-25 : radiation therapy machine produced by Atomic Energy of Canada Limited (AECL)

Therac-25(1987)

- The Therac-25 : radiation therapy machine produced by Atomic Energy of Canada Limited (AECL)
- Involved in at least six accidents, in which patients were given massive overdoses of radiation, approximately 100 times the intended dose.

- The Therac-25 : radiation therapy machine produced by Atomic Energy of Canada Limited (AECL)
- Involved in at least six accidents, in which patients were given massive overdoses of radiation, approximately 100 times the intended dose.
- Design error in the control software (race condition)

Intel Pentium Bug (1994)

The Intel FDIV bug : Bug in the intel P5 floating point unit

Intel Pentium Bug (1994)

- The Intel FDIV bug : Bug in the intel P5 floating point unit
- Discovered by a professor working on Brun's constant
- $(\frac{1}{3} + \frac{1}{5}) + (\frac{1}{5} + \frac{1}{7}) + (\frac{1}{11} + \frac{1}{13}) + (\frac{1}{17} + \frac{1}{19}) + \dots$ converges to B \approx 1.90216054

Intel Pentium Bug (1994)

- The Intel FDIV bug : Bug in the intel P5 floating point unit
- Discovered by a professor working on Brun's constant
- $(\frac{1}{3} + \frac{1}{5}) + (\frac{1}{5} + \frac{1}{7}) + (\frac{1}{11} + \frac{1}{13}) + (\frac{1}{17} + \frac{1}{19}) + \dots$ converges to B \approx 1.90216054
- Intel offered to replace all flawed processors

ESA (European Space Agency) Ariane 5 Launcher

- ESA (European Space Agency) Ariane 5 Launcher
 - Shown here in maiden flight on 4th June 1996

- ESA (European Space Agency) Ariane 5 Launcher
 - Shown here in maiden flight on 4th June 1996
- Self destructs 37 secs later

- ESA (European Space Agency) Ariane 5 Launcher
 - Shown here in maiden flight on 4th June 1996
- Self destructs 37 secs later
 - uncaught exception: data conversion from 64-bit float to 16-bit signed int

Toyota Prius (2010)

First mass produced hybrid vehicle

Toyota Prius (2010)

- First mass produced hybrid vehicle
 - software "glitch" found in anti-lock braking system
 - Eventually fixed via software update in total 185,000 cars recalled, at huge cost

Nest Thermostat (2016)

Nest Thermostat, the smart, learning thermostat from Nest Labs

Nest Thermostat (2016)

- Nest Thermostat, the smart, learning thermostat from Nest Labs
 - software "glitch" led several homes to a frozen state, reported in NY times, Jan 13, 2016. May be, old fashioned mechanical thermostats better!

What do these stories have in common?

Programmable computing devices

- conventional computers and networks
- software embedded in devices

What do these stories have in common?

Programmable computing devices

- conventional computers and networks
- software embedded in devices
- Programming error direct cause of failure
- Software critical
 - for safety
 - for business
 - for performance

What do these stories have in common?

Programmable computing devices

- conventional computers and networks
- software embedded in devices
- Programming error direct cause of failure
- Software critical
 - for safety
 - for business
 - for performance
- High costs incurred: financial, loss of life
- Failures avoidable

"Applied Mathematics for modelling and analysing ICT systems"

Formal methods offer a large potential for:

"Applied Mathematics for modelling and analysing ICT systems"

Formal methods offer a large potential for:

obtaining an early integration of verification in the design process

"Applied Mathematics for modelling and analysing ICT systems"

Formal methods offer a large potential for:

- obtaining an early integration of verification in the design process
- providing more effective verification techniques (higher coverage)

"Applied Mathematics for modelling and analysing ICT systems"

Formal methods offer a large potential for:

- obtaining an early integration of verification in the design process
- providing more effective verification techniques (higher coverage)
- reducing the verification time

Simulation and Testing

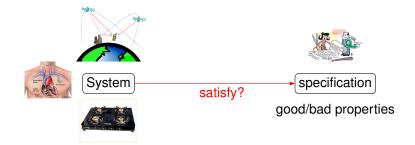
Basic procedure

- Take a model
- Simulate it with certain inputs
- Observe what happens, and if this is desired

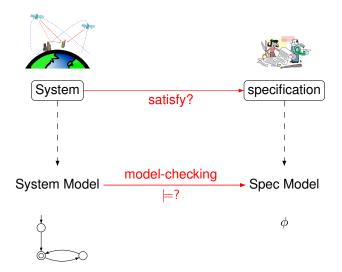
Important Drawbacks

- possible behaviours very large/infinite
- unexplored behaviours may contain fatal bug
- can show presence of errors, not their absence

Model Checking


 Year 2008 : ACM confers the Turing Award to the pioneers of Model Checking: Ed Clarke, Allen Emerson, and Joseph Sifakis
Why?

Model checking


- Model checking has evolved in last 25 years into a widely used verification and debugging technique for software and hardware.
- Cost of not doing formal verification is high!
 - The France Telecom example
 - Ariane rocket: kaboom due to integer overflow!
 - Toyota/Ford recalls

- Model checking has evolved in last 25 years into a widely used verification and debugging technique for software and hardware.
- Cost of not doing formal verification is high!
 - The France Telecom example
 - Ariane rocket: kaboom due to integer overflow!
 - Toyota/Ford recalls
- Model checking used (and further developed) by companies/institutes such as IBM, Intel, NASA, Cadence, Microsoft, and Siemens, and has culminated in many freely downloadable software tools that allow automated verification.

What is Model Checking?

What is Model Checking?

Model Checker as a Black Box

- Inputs to Model checker : A finite state system *M*, and a property *P* to be checked.
- Question : Does M satisfy P?
- Possible Outputs
 - Yes, M satisfies P
 - No, here is a counter example!.

What are Models?

Transition Systems

- States labeled with propositions
- Transition relation between states
- Action-labeled transitions to facilitate composition

What are Models?

Transition Systems

- States labeled with propositions
- Transition relation between states
- Action-labeled transitions to facilitate composition

Expressivity

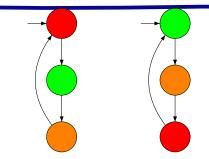
- Programs are transition systems
- Multi-threading programs are transition systems
- Communicating processes are transition systems
- Hardware circuits are transition systems
- What else?

What are Properties?

Example properties

- Can the system reach a deadlock?
- Can two processes ever be together in a critical section?
- On termination, does a program provide correct output?

What are Properties?


Example properties

- Can the system reach a deadlock?
- Can two processes ever be together in a critical section?
- On termination, does a program provide correct output?

Logics of Relevance

- Classical Logics
 - First Order Logic
 - Monadic Second Order Logic
- Temporal Logics
 - ► Propositional Logic, enriched with modal operators such as (always) and ◊ (eventually)
 - Interpreted over state sequences (linear)
 - Or over infinite trees (branching)

Two Traffic Lights

- 1. The traffic lights are never green simultaneously $\forall x(\neg(green_1(x) \land green_2(x))) \text{ or } \Box(\neg(green_1 \land green_2))$
- 2. The first traffic light is infinitely often green $\forall x \exists y (x < y \land green_1(y)) \text{ or } \Box \diamond green_1$
- 3. Between every two occurrences of traffic light 1 becoming red, traffic light 2 becomes red once.

The Model Checking Process

Modeling Phase

- model the system under consideration
- as a first sanity check, perform some simulations
- formalise property to be checked

The Model Checking Process

Modeling Phase

- model the system under consideration
- as a first sanity check, perform some simulations
- formalise property to be checked
- Running Phase
 - run the model checker to check the validity of the property in the model

The Model Checking Process

Modeling Phase

- model the system under consideration
- as a first sanity check, perform some simulations
- formalise property to be checked
- Running Phase
 - run the model checker to check the validity of the property in the model
- Analysis Phase
 - ▶ property satisfied? → check next property (if any)
 - property violated? \rightarrow
 - analyse generated counter example by simulation
 - ► refine the model, design, property, ... and repeat entire procedure
 - \blacktriangleright out of memory? \rightarrow try to reduce the model and try again

The Pros of Model Checking

- widely applicable (hardware, software...)
- allows for partial verification (only relevant properties)
- potential "push-button" technology (tools)
- rapidly increasing industrial interest
- in case of property violation, a counter example is provided
- sound mathematical foundations
- not biased to the most possible scenarios (like testing)

The Cons of Model Checking

- model checking is only as "good" as the system model
- no guarantee about completeness of results (incomplete specifications)

Neverthless:

Model Checking is an effective technique to expose potential design errors

Striking Model-Checking Examples

- Security : Needham-Schroeder encryption protocol
 - error that remained undiscovered for 17 years revealed (model checker SAL)
- Transportation Systems
 - Train model containing 10⁴⁷ states (model checker UPPAAL)
- Model Checkers for C, JAVA, C++
 - used (and developed) by Microsoft, Intel, NASA
 - successful application area: device drivers (model checker SLAM)
- Dutch storm surge barrier in Nieuwe Waterweg
- Software in current/next generation of space missiles
 - NASA's
 - > Java Pathfinder, Deep Space Habitat, Lab for Reliable Software

What are appropriate models?

 from programs, circuits, communication protocols to transition systems

What are appropriate models?

- from programs, circuits, communication protocols to transition systems
- What are properties?
 - Safety, Liveness, fairness

What are appropriate models?

- from programs, circuits, communication protocols to transition systems
- What are properties?
 - Safety, Liveness, fairness
- How to check regular properties?
 - finite state automata and regular safety properties
 - Buchi automata and ω-regular properties

How to express properties succintly?

- First Order Logic (FO) : syntax, semantics
- Monadic Second Order Logic (MSO) : syntax, semantics
- Linear-Temporal-Logic (LTL) : syntax, semantics
- What can be expressed in each logic?
- Satisfiability and Model checking : algorithms, complexity

Relevant Topics

How to express properties succintly?

- First Order Logic (FO) : syntax, semantics
- Monadic Second Order Logic (MSO) : syntax, semantics
- Linear-Temporal-Logic (LTL) : syntax, semantics
- What can be expressed in each logic?
- Satisfiability and Model checking : algorithms, complexity
- How to make models succint?
 - Equivalences and partial-orders on transition systems
 - Which properties are preserved?
 - Minimization algorithms