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Topic 3.1

Semantics - meaning of the formulas
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Truth values

We denote the set of truth values as B , {0, 1}.

0 and 1 are only distinct objects without any intuitive meaning.

We may view 0 as false and 1 as true but this is only our emotional response
to the symbols.
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Assignment

Definition 3.1
An assignment is an element of Vars→ B.

Example 3.1

{p1 7→ 1, p2 7→ 0, p3 7→ 0, . . . } is an assignment

Since Vars is countable, the set of assignments is non-empty, and infinitely
many.

An assignment m may or may not satisfy a formula F .
The satisfaction relation is usually denoted by m |= F in infix notation.
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Propositional Logic Semantics

Definition 3.2
The satisfaction relation |= between assignments and formulas is the smallest
relation that satisfies the following conditions.

I m |= >
I m |= p if m(p) = 1

I m |= ¬F if m 6|= F

I m |= F1 ∨ F2 if m |= F1 or m |= F2

I m |= F1 ∧ F2 if m |= F1 and m |= F2

I m |= F1 ⊕ F2 if m |= F1 or m |= F2, but not both

I m |= F1 ⇒ F2 if if m |= F1 then m |= F2

I m |= F1 ⇔ F2 if m |= F1 iff m |= F2

Exercise 3.1
Why ⊥ is not explicitly mentioned in the above definition?
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Example: satisfaction relation

Example 3.2

Consider assignment m = {p1 7→ 1, p2 7→ 0, p3 7→ 0, . . . }
And, formula (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

(p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

p1 (¬p2 ⇔ (p1 ∧ p3))

¬p2

p2

(p1 ∧ p3)

p1 p3

m |=

m |=m 6|= m 6|=

m |= m 6|=

m 6|=

m 6|=

Exercise 3.2
write the satisfiability checking procedure formally.
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Satisfiable, valid, unsatisfiable

We say

I m satisfies F if m |= F ,

I F is satisfiable if there is an assignment m such that m |= F ,

I F is valid (written |= F ) if for each assignment m m |= F , and

I F is unsatisfiable (written 6|= F ) if there is no assignment m such that
m |= F .

Exercise 3.3
If F is sat then ¬F is .
If F is valid then ¬F is .
If F is unsat then ¬F is .

A valid formula is also called a tautology.
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Overloading |= : set of assignments

We extend the usage of |= in the following natural ways.

Definition 3.3
Let M be a (possibly infinite) set of assignments.
M |= F if for each m ∈ M, m |= F .

Example 3.3

{{p → 1, q → 1}, {p → 1, q → 0}} |= p ∨ q

Exercise 3.4
Does the following hold?

I {{p → 1, q → 1}, {p → 0, q → 0}} |= p

I {{p → 1, q → 1}} |= p ∧ q

I {{pi → (k = i)|i ∈ N}|k ∈ N} |= p1
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Overloading |= : set of formulas

Definition 3.4
Let Σ be a (possibly infinite) set of formulas.
Σ |= F if for each assignment m that satisfies each formula in Σ, m |= F .

I Σ |= F is read Σ implies F .
I If {G} |= F then we may write G |= F .

Example 3.4

{p, q} |= p ∨ q

Exercise 3.5
Does the following hold?

I {p, q} |= p ∧ q

I {p ⇒ q, q ⇒ p} |= p ⇔ q

I {p ⇒ q, q} |= p ⊕ q

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 10

Equivalent

Definition 3.5
Let F ≡ G if for each assignment m

m |= F iff m |= G.

Example 3.5

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
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Equisatisfiable and Equivalid

Definition 3.6
Formulas F and G are equisatisfiable if

F is sat iff G is sat.

Definition 3.7
Formulas F and G are equivalid if

|= F iff |= G .

Commentary: The concept of equisatisfiable is used in formula transformations. We often say that after a transformation the formula
remained equisatisfiable. Equivalid is the dual concept, rarely used in practice.
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Topic 3.2

Decidability of SAT
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Notation alert: decidable

A problem is decidable if there is an
algorithm to solve the problem.
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Propositional satisfiability problem

The following problem is called the satisfiability problem

For a given F ∈ P, is F satisfiable?

Theorem 3.1
The propositional satisfiability problem is decidable.

Proof.
Let n = |Vars(F )|.
We need to enumerate 2n elements of Vars(F )→ B.
If any of the assignments satisfy the formula, then F is sat
Otherwise, F is unsat.

Exercise 3.6
Give a procedure to decide the validity of a formula.
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Complexity of the decidability question?

I If we enumerate all assignments to check satisfiability, the cost is
exponential

I We do not know if we can do better. However, there are several tricks
that have made satisfiability checking practical for the real world
formulas.
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Topic 3.3

Truth tables
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Truth tables

Truth tables was the first method to decide propositional logic.

The method is usually presented in slightly different notation.

We need to assign a truth value to every formula.
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Truth function

An assignment m is in Vars→ B.

We can extend m to P→ B in the following way.

m(F ) =

{
1 m |= F

0 otherwise.

The extended m is called truth function.

Since truth functions are natural extensions of assignments, we did not
introduce new symbols.
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Truth functions for logical connectives

Let F and G are logical formulas, and m is an assignment.
Due to the semantics of the propositional logic, the following holds for the
truth functions.

m(F ) m(¬F )

0 1
1 0

m(F ) m(G ) m(F ∧ G ) m(F ∨ G ) m(F ⊕ G ) m(F ⇒ G ) m(F ⇔ G )

0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 1
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Truth table
For a formula F , a truth table consists of 2|Vars(F )| rows. Each row considers
one of the assignments and computes the truth value of F for each of them.

Example 3.6

Consider (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))
We will not write m(.) in the top row for brevity.
p1 p2 p3 (p1 ⇒ ( ¬ p2 ⇔ ( p1 ∧ p3 )))

0 0 0 0
0
0
0
1
1
1
1

1
1
1
1
0
1
1
0

1
1
0
0
1
1
0
0

0
0
1
1
0
0
1
1

0
0
1
1
0
1
1
0

0
0
0
0
1
1
1
1

0
0
0
0
0
1
0
1

0
1
0
1
0
1
0
1

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

The column under the leading connective has 1s therefore the formula is sat.
But, there are some 0s in the column therefore the formula is not valid.
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Example : DeMorgan law

Example 3.7

Let us show p ∨ q ≡ ¬(¬p ∧ ¬q).

p q (p ∨ q) ¬ (¬ p ∧ ¬ q)

0 0 0
1
1
1

0
1
1
1

1
1
0
0

0
0
1
1

1
0
0
0

1
0
1
0

0
1
0
1

0 1
1 0
1 1

Since the truth values of both the formulas are same in each row, the
formulas are equivalent.

Exercise 3.7
Show p ∧ q ≡ ¬(¬p ∨ ¬q) using a truth table
Commentary: p ∧ q ≡ ¬(¬p ∨ ¬q) and p ∨ q ≡ ¬(¬p ∧ ¬q) are called DeMorgan law.
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Example : definition of ⇒

Example 3.8

Let us show p ⇒ q ≡ (¬p ∨ q).

p q (p ⇒ q) (¬ p ∨ q)

0 0 1
1
0
1

1
1
0
0

0
0
1
1

1
1
0
1

0
1
0
1

0 1
1 0
1 1

Since the truth values of both the formulas are same in each row, the
formulas are equivalent.

It appears that ⇒ is a redundant symbol. We can write it in terms of the
other symbols.
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Example : definition of ⇔

Example 3.9

Let us show p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p).

p q (p ⇔ q) (p ⇒ q) ∧ (q ⇒ p)

0 0 1
0
0
1

0
0
1
1

1
1
0
1

0
1
0
1

1
0
0
1

0
1
0
1

1
0
1
1

0
0
1
1

0 1
1 0
1 1
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Example: definition ⊕

Example 3.10

Let us show (p ⊕ q) ≡ (¬p ∧ q) ∨ (p ∧ ¬q) using truth table.

p q (p ⊕ q) (¬ p ∧ q) ∨ (p ∧ ¬ q)

0 0 0
1
1
0

1
1
0
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
0
1
1

0
0
1
0

1
0
1
0

0
1
0
1

0 1
1 0
1 1

Exercise 3.8
Show (p ⊕ q) ≡ (¬p ∨ ¬q) ∧ (p ∨ q)
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Example: Associativity

Example 3.11

Let us show (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p q r (p ∧ q) ∧ r p ∧ (q ∧ r)

0 0 0 0
0
0
0
1
1
1
1

0
0
0
0
0
0
1
1

0
0
1
1
0
0
1
1

0
0
0
0
0
0
0
1

0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
1

0
0
1
1
0
0
1
1

0
0
0
1
0
0
0
1

0
1
0
1
0
1
0
1

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Exercise: associativity

Exercise 3.9
Prove/disprove using truth tables

I (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

I (p ⊕ q)⊕ r ≡ p ⊕ (q ⊕ r)

I (p ⇔ q)⇔ r ≡ p ⇔ (q ⇔ r)

I (p ⇒ q)⇒ r ≡ p ⇒ (q ⇒ r)
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Exercise: distributivity

Exercise 3.10
Prove/disprove using truth tables prove that ∧ distributes over ∨ and
vice-versa.

I p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

I p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
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Tedious truth tables

I We need to write 2n rows even if some simple observations about the
formula may prove unsatisfiablity/satisfiability.
For example,
I (a ∨ (c ∧ a)) is sat (why? - no negation)
I (a ∨ (c ∧ a)) ∧ ¬(a ∨ (c ∧ a)) is unsat (why?- contradiction at top level)

I We should be able to take such shortcuts?

We will see many methods that will allow
us to take such shortcuts. But not now!
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Topic 3.4

Expressive power of propositional logic
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Boolean functions

A finite boolean function is in Bn → B.

A formula F with Vars(F ) = {p1, . . . , pn} can be viewed as a Boolean
function f that is defined as follows.

for each assignment m, f (m(p1), . . . ,m(pn)) = m(F )

We say F represents f .

Example 3.12

Formula p1 ∨ p2 represents the following function

f = {(0, 0)→ 0, (0, 1)→ 1, (1, 0)→ 1, (1, 1)→ 1}

A Boolean function is another way of writing truth table.
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Expressive power

Theorem 3.2
For each finite boolean function f , there is a formula F that represents f .

Proof.
Let f : Bn → B. We construct a formula F to represent f .

Let p0
i , ¬pi and p1

i , pi .
Let (b1, . . . , bn) ∈ Bn.

Let F(b1,...,bn) =

{
(pb1

1 ∧ · · · ∧ pbnn ) if f (b1, . . . , bn) = 1

⊥ otherwise.

F , F(0,...,0) ∨ · · · ∨ F(1,...,1)︸ ︷︷ ︸
All Boolean combinations

Exercise 3.11
Workout if F really represents f .

We used only three logical
connectives to construct F
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Insufficient expressive power

If we do not have sufficiently many logical connectives, we may not be able
to represent all Boolean functions.

Example 3.13

∧ alone can not express all boolean functions.

To prove this we show that Boolean function f = {0→ 1, 1→ 1} can not be
achieved by any combination of ∧s.

We setup induction over the sizes of formulas consisting a variable p and ∧.
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Insufficient expressive power II

base case:
Only choice is p.(why?) For p = 0, the function does not match.

induction step:
Let us assume that a formula F of size n − 1 does not represents f .
We can construct a longer formula in the following two ways.

(F ∧ p) (p ∧ F )

Both the formulas do not represent f .(why?)

Therefore ∧ alone is not expressive enough.

Commentary: Ideally, we should be constructing (F ∧ G) for arbitrary formulas F and G instead of (F ∧ p). We took the shortcut for
the ease of presentation in the class. We could take this shortcut for ∧, since it is commutative and associative.
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Minimal logical connectives
We used

I 2 0-ary,

I 1 unary, and

I 5 binary

connectives to describe the propositional logic.

However, it is not the minimal set needed for the maximum expressivity.

Example 3.14

¬ and ∨ can define the whole propositional logic.
I > ≡ p ∨ ¬p for some p ∈ Vars

I ⊥ ≡ ¬>
I (p ∧ q) ≡ ¬(¬p ∨ ¬q)

I (p ⊕ q) ≡ (p ∧ ¬q) ∨ (¬p ∧ q)

I (p ⇒ q) ≡ (¬p ∨ q)

I (p ⇔ q) ≡ (p ⇒ q) ∧ (q ⇒ p)

Exercise 3.12
a. Show ¬ and ∧ can define all the other connectives
b. Show ⊕ alone can not define ¬
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Universal connective

Let ∧ be a binary connective with the following truth table

m(F ) m(G ) m(F∧G )

0 0 1
0 1 1
1 0 1
1 1 0

Exercise 3.13
a. Show ∧ can define all other connectives
b. Are there other universal connectives?
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Topic 3.5

Problems
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Semantics

Exercise 3.14
Show F (⊥/p) ∧ F (>/p) |= F |= F (⊥/p) ∨ F (>/p).
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Truth tables

Exercise 3.15
Prove/disprove validity of the following formulas using truth tables.

1. (p ⇒ (q ⇒ r))⇔ ((p ∧ q)⇒ r))

2. p ∧ (q ⊕ r)⇔ (p ∧ q)⊕ (q ∧ r)

3. (p ∨ q) ∧ (¬q ∨ r)⇔ (p ∨ r)

4. ⊥ ⇒ F for any F
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Expressive power

Exercise 3.16
Show ¬ and ⊕ is not as expressive as propositional logic.

Exercise 3.17
Prove/disprove:
if-then-else is fully expressive

Exercise 3.18
Prove/disprove that the following subsets of connectives are fully expressive.

I ∨,⊕
I ⊥,⊕
I ⇒,⊕
I ∨,∧
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|= vs. ⇒

Exercise 3.19
Using truth table prove the following

I F |= G if and only if |= (F ⇒ G ).

I F ≡ G if and only if |= (F ⇔ G ).
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End of Lecture 3
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