CS228 Logic for Computer Science 2020

Lecture 3: Semantics and truth tables

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-01-26

Topic 3.1

Semantics - meaning of the formulas

Truth values

We denote the set of truth values as $\mathcal{B} \triangleq \{0,1\}$.

0 and 1 are only distinct objects without any intuitive meaning.

We may view 0 as false and 1 as true but this is only our emotional response to the symbols.

Assignment

Definition 3.1

An assignment is an element of $Vars \rightarrow \mathcal{B}$.

Example 3.1

 $\{p_1\mapsto 1, p_2\mapsto 0, p_3\mapsto 0,\dots\}$ is an assignment

Since **Vars** is countable, the set of assignments is non-empty, and infinitely many.

An assignment m may or may not satisfy a formula F.

The satisfaction relation is usually denoted by $m \models F$ in infix notation.

Propositional Logic Semantics

Definition 3.2

The satisfaction relation \models between assignments and formulas is the smallest relation that satisfies the following conditions.

- $ightharpoonup m \models \top$
- $ightharpoonup m \models p$ if m(p) = 1
- $ightharpoonup m \models \neg F$ if $m \not\models F$
- $ightharpoonup m \models F_1 \lor F_2$ if $m \models F_1$ or $m \models F_2$
- $ightharpoonup m \models F_1 \land F_2$ if $m \models F_1$ and $m \models F_2$
- $ightharpoonup m \models F_1 \oplus F_2$ if $m \models F_1$ or $m \models F_2$, but not both
- $ightharpoonup m \models F_1 \Rightarrow F_2$ if if $m \models F_1$ then $m \models F_2$

CS228 Logic for Computer Science 2020

 $ightharpoonup m \models F_1 \Leftrightarrow F_2 \quad \text{if } m \models F_1 \text{ iff } m \models F_2$

Exercise 3.1

Instructor: Ashutosh Gupta

Example: satisfaction relation

Example 3.2

Consider assignment
$$m = \{p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0, \dots\}$$

And, formula $(p_1 \Rightarrow (\neg p_2 \Leftrightarrow (p_1 \land p_3)))$
 $m \not\models (p_1 \Rightarrow (\neg p_2 \Leftrightarrow (p_1 \land p_3)))$
 $m \models p_1$
 $m \not\models (\neg p_2 \Leftrightarrow (p_1 \land p_3))$
 $m \models \neg p_2$
 $m \not\models (p_1 \land p_3)$
 $m \not\models p_2$
 $m \not\models p_3$

Exercise 3.2

write the satisfiability checking procedure formally.

Satisfiable, valid, unsatisfiable

We say

- ightharpoonup m satisfies F if $m \models F$,
- ightharpoonup F is satisfiable if there is an assignment m such that $m \models F$,
- ▶ F is valid (written $\models F$) if for each assignment m m $\models F$, and
- ▶ F is unsatisfiable (written $\not\models F$) if there is no assignment m such that $m \models F$.

Exercise 3.3

If F is sat then $\neg F$ is _____.

If F is valid then $\neg F$ is _____.

If F is unsat then $\neg F$ is _____.

A valid formula is also called a tautology.

Overloading \models : set of assignments

We extend the usage of \models in the following natural ways.

Definition 3.3

Let M be a (possibly infinite) set of assignments.

$$M \models F$$
 if for each $m \in M$, $m \models F$.

Example 3.3

$$\{\{p\rightarrow 1, q\rightarrow 1\}, \{p\rightarrow 1, q\rightarrow 0\}\} \models p\vee q$$

Exercise 3.4

Does the following hold?

- ► $\{\{p \to 1, q \to 1\}, \{p \to 0, q \to 0\}\} \models p$
- $\{\{p \to 1, q \to 1\}\} \models p \land q$

Overloading \models : set of formulas

Definition 3.4

Let Σ be a (possibly infinite) set of formulas.

 $\Sigma \models F$ if for each assignment m that satisfies each formula in Σ , m $\models F$.

- $ightharpoonup \Sigma \models F$ is read Σ implies F.
- ▶ If $\{G\} \models F$ then we may write $G \models F$.

Example 3.4

$$\{p,q\} \models p \lor q$$

Exercise 3.5

Does the following hold?

- \triangleright $\{p,q\} \models p \land q$
- $ightharpoonup \{p \Rightarrow q, q\} \models p \oplus q$

Equivalent

Definition 3.5

Let $F \equiv G$ if for each assignment m

$$m \models F \text{ iff } m \models G.$$

Example 3.5

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Equisatisfiable and Equivalid

Definition 3.6

Formulas F and G are equisatisfiable if

F is sat iff G is sat.

Definition 3.7

Formulas F and G are equivalid if

CS228 Logic for Computer Science 2020

$$\models F$$
 iff $\models G$.

Topic 3.2

Decidability of SAT

Notation alert: decidable

A problem is decidable if there is an algorithm to solve the problem.

Propositional satisfiability problem

The following problem is called the satisfiability problem

For a given $F \in \mathbf{P}$, is F satisfiable?

Theorem 3.1

The propositional satisfiability problem is decidable.

Proof.

Let $n = |\mathbf{Vars}(F)|$.

We need to enumerate 2^n elements of $Vars(F) \to \mathcal{B}$.

If any of the assignments satisfy the formula, then F is sat Otherwise, F is unsat.

Exercise 3.6

Give a procedure to decide the validity of a formula.

Complexity of the decidability question?

- ▶ If we enumerate all assignments to check satisfiability, the cost is exponential
- We do not know if we can do better. However, there are several tricks that have made satisfiability checking practical for the real world formulas.

Topic 3.3

Truth tables

Truth tables

Truth tables was the first method to decide propositional logic.

The method is usually presented in slightly different notation.

We need to assign a truth value to every formula.

Truth function

An assignment m is in $Vars \rightarrow \mathcal{B}$.

We can extend m to $\mathbf{P} \to \mathcal{B}$ in the following way.

$$m(F) = \begin{cases} 1 & m \models F \\ 0 & otherwise. \end{cases}$$

The extended m is called truth function.

Since truth functions are natural extensions of assignments, we did not introduce new symbols.

Truth functions for logical connectives

Let F and G are logical formulas, and m is an assignment.

Due to the semantics of the propositional logic, the following holds for the truth functions.

) m(-	$m(\neg F)$
1	1
0	0
0	0

m(F)	m(G)	$m(F \wedge G)$	$m(F \vee G)$	$m(F \oplus G)$	$m(F \Rightarrow G)$	$m(F \Leftrightarrow G)$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Truth table

For a formula F, a truth table consists of $2^{|Vars(F)|}$ rows. Each row considers one of the assignments and computes the truth value of F for each of them.

Example 3.6

Consider $(p_1 \Rightarrow (\neg p_2 \Leftrightarrow (p_1 \land p_3)))$

We will not write m(.) in the top row for brevity.

The firm the times in (t) in the top ten ter the time.											
p_1	p_2	<i>p</i> ₃	p_1	\Rightarrow	(¬	p_2	\Leftrightarrow (p_1	\wedge	p ₃)))	
0	0	0	0	1	1	0	0	0	0	0	_
0	0	1	0	1	1	0	0	0	0	1	
0	1	0	0	1	0	1	1	0	0	0	
0	1	1	0	1	0	1	1	0	0	1	
1	0	0	1	0	1	0	0	1	0	0	
1	0	1	1	1	1	0	1	1	1	1	
1	1	0	1	1	0	1	1	1	0	0	
1	1	1	1	0	0	1	0	1	1	1	

The column under the leading connective has 1s therefore the formula is sat. But, there are some 0s in the column therefore the formula is not valid.

Example: DeMorgan law

Example 3.7

Let us show $p \lor q \equiv \neg(\neg p \land \neg q)$.

p	q	$(p \lor q)$	¬	(¬	p	\wedge	\neg	q)	
0	0	0	0	1	0	1	1	0	
0	1	1	1	1	0	0	0	1	
1	0	1	1	0	1	0	1	0	
_1	1	1	1	0	1	0	0	1	

Since the truth values of both the formulas are same in each row, the formulas are equivalent.

Exercise 3.7

Show $p \land q \equiv \neg(\neg p \lor \neg q)$ using a truth table

Commentary: $p \land q \equiv \neg(\neg p \lor \neg q)$ and $p \lor q \equiv \neg(\neg p \land \neg q)$ are called DeMorgan law.

Example : definition of \Rightarrow

Example 3.8

Let us show $p \Rightarrow q \equiv (\neg p \lor q)$.

p	q	$(p \Rightarrow q)$	(¬	p	\vee	q)
0	0	1	1	0	1	0
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	1	1	0	1	1	1

Since the truth values of both the formulas are same in each row, the formulas are equivalent.

It appears that \Rightarrow is a redundant symbol. We can write it in terms of the other symbols.

Example : definition of \Leftrightarrow

Example 3.9

Let us show $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.

р	q	$(p \Leftrightarrow q)$	(p	\Rightarrow	q)	\wedge	(q	\Rightarrow	p)	
0	0	1	0	1	0	1	0	1	0	_
0	1	0	0	1	1	0	1	0	0	
1	0	0	1	0	0	0	0	1	1	
1	1	1	1	1	1	1	1	1	1	

Example: definition \oplus

Example 3.10

Let us show $(p \oplus q) \equiv (\neg p \land q) \lor (p \land \neg q)$ using truth table.

p	q	$(p \oplus q)$	(¬	p	\wedge	q)	\vee	(<i>p</i>	\wedge	\neg	q)
0	0	0	1	0	0	0	0	0	0	1	0
0	1	1	1	0	1	1	1	0	0	0	1
1	0	1	0	1	0	0	1	1	1	1	0
1	1	0 1 1 0	0	1	0	1	0	1	0	0	1

Exercise 3.8

Show
$$(p \oplus q) \equiv (\neg p \lor \neg q) \land (p \lor q)$$

Example: Associativity

Example 3.11

Let us show $(p \land q) \land r \equiv p \land (q \land r)$

p	q	r	(p	\wedge	q)	\wedge	r	p	\wedge	(q	\wedge	r)
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0	1
0	1	0	0	0	1	0	0	0	0	1	0	0
0	1	1	0	0	1	0	1	0	0	1	1	1
1	0	0	1	0	0	0	0	1	0	0	0	0
1	0	1	1	0	0	0	1	1	0	0	0	1
1	1	0	1	1	1	0	0	1	0	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1

Exercise: associativity

Exercise 3.9

Prove/disprove using truth tables

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$$

$$(p \Leftrightarrow q) \Leftrightarrow r \equiv p \Leftrightarrow (q \Leftrightarrow r)$$

$$(p \Rightarrow q) \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$$

Exercise: distributivity

Exercise 3.10

Prove/disprove using truth tables prove that \land distributes over \lor and vice-versa.

Tedious truth tables

- ▶ We need to write 2ⁿ rows even if some simple observations about the formula may prove unsatisfiablity/satisfiability. For example,
 - \blacktriangleright $(a \lor (c \land a))$ is sat (why? no negation)
 - ▶ $(a \lor (c \land a)) \land \neg (a \lor (c \land a))$ is unsat (why?- contradiction at top level)
- ▶ We should be able to take such shortcuts?

We will see many methods that will allow us to take such shortcuts. But not now!

Topic 3.4

Expressive power of propositional logic

Boolean functions

A finite boolean function is in $\mathcal{B}^n \to \mathcal{B}$.

A formula F with $Vars(F) = \{p_1, \dots, p_n\}$ can be viewed as a Boolean function f that is defined as follows.

for each assignment
$$m, f(m(p_1), \ldots, m(p_n)) = m(F)$$

We say F represents f.

Example 3.12

Formula $p_1 \lor p_2$ represents the following function

$$f = \{(0,0) \to 0, (0,1) \to 1, (1,0) \to 1, (1,1) \to 1\}$$

A Boolean function is another way of writing truth table.

Expressive power

Theorem 3.2

For each finite boolean function f, there is a formula F that represents f.

Proof.

Let $f: \mathcal{B}^n \to \mathcal{B}$. We construct a formula F to represent f.

Let
$$p_i^0 \triangleq \neg p_i$$
 and $p_i^1 \triangleq p_i$.

Let $(b_1,\ldots,b_n)\in\mathcal{B}^n$.

Let
$$F_{(b_1,\ldots,b_n)} = egin{cases} (p_1^{b_1} \wedge \cdots \wedge p_n^{b_n}) & ext{if } f(b_1,\ldots,b_n) = 1 \ oxed{oxed} & ext{otherwise}. \end{cases}$$

$$F \triangleq \underbrace{F_{(0,\dots,0)} \vee \dots \vee F_{(1,\dots,1)}}_{\text{All Boolean combinations}} \qquad \text{We used only three logical connectives to construct } F$$

Exercise 3.11

Workout if F really represents f.

Insufficient expressive power

If we do not have sufficiently many logical connectives, we may not be able to represent all Boolean functions.

Example 3.13

 \land alone can not express all boolean functions.

To prove this we show that Boolean function $f = \{0 \to 1, 1 \to 1\}$ can not be achieved by any combination of $\land s$.

We setup induction over the sizes of formulas consisting a variable p and \wedge .

Insufficient expressive power II

base case:

Only choice is $p_{\cdot,(\text{why?})}$ For p=0, the function does not match.

induction step:

Let us assume that a formula F of size n-1 does not represents f. We can construct a longer formula in the following two ways.

$$(F \wedge p)$$
 $(p \wedge F)$

Both the formulas do not represent $f_{\cdot,(why?)}$

Therefore \land alone is not expressive enough.

Minimal logical connectives

We used

- 2 0-ary,
- ▶ 1 unary, and
- 5 binary

connectives to describe the propositional logic.

However, it is not the minimal set needed for the maximum expressivity.

Example 3.14

 \neg and \lor can define the whole propositional logic.

- ▶ $\top \equiv p \lor \neg p$ for some $p \in \mathbf{Vars}$ ▶ $(p \oplus q) \equiv (p \land \neg q) \lor (\neg p \land q)$
- I = ¬T \triangleright $(p \Rightarrow q) \equiv (\neg p \lor q)$
- \triangleright $(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$ $(p \land q) \equiv \neg (\neg p \lor \neg q)$

Exercise 3.12

a. Show \neg and \land can define all the other connectives

CS228 Logic for Computer Science 2020

b. Show \oplus alone can not define \neg

Universal connective

Let $\overline{\wedge}$ be a binary connective with the following truth table

m(F)	m(G)	$m(F\overline{\wedge}G)$
0	0	1
0	1	1
1	0	1
1	1	0

Exercise 3.13

- a. Show $\overline{\wedge}$ can define all other connectives
- b. Are there other universal connectives?

Topic 3.5

Problems

Semantics

Exercise 3.14

Show $F(\perp/p) \wedge F(\top/p) \models F \models F(\perp/p) \vee F(\top/p)$.

Truth tables

Exercise 3.15

Prove/disprove validity of the following formulas using truth tables.

1.
$$(p \Rightarrow (q \Rightarrow r)) \Leftrightarrow ((p \land q) \Rightarrow r))$$

2.
$$p \land (q \oplus r) \Leftrightarrow (p \land q) \oplus (q \land r)$$

3.
$$(p \lor q) \land (\neg q \lor r) \Leftrightarrow (p \lor r)$$

4.
$$\perp \Rightarrow F$$
 for any F

Expressive power

Exercise 3.16

Show \neg and \oplus is not as expressive as propositional logic.

Exercise 3.17

Prove/disprove:

if-then-else is fully expressive

Exercise 3.18

Prove/disprove that the following subsets of connectives are fully expressive.

- ▶ V, ⊕
- ightharpoonup \perp , \oplus
- ightharpoonup \Rightarrow , \oplus
- \triangleright \vee , \wedge

Exercise 3.19

Using truth table prove the following

- $ightharpoonup F \models G$ if and only if $\models (F \Rightarrow G)$.
- ▶ $F \equiv G$ if and only if $\models (F \Leftrightarrow G)$.

End of Lecture 3

