CS228 Logic for Computer Science 2020

Lecture 5: Formal proofs - derived rules

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-01-24

Topic 5.1

Derived rules

- In logical thinking, we have many deductions that are not listed in our rules.
- The deductions are consequence of our rules. We call them derived rules.
- Let us look at a few.

Derived rules : Modus ponens

Theorem 5.1If we he have $\Sigma \vdash \neg F \lor G$ and $\Sigma \vdash F$, we can derive $\Sigma \vdash G$.Proof.1. $\Sigma \vdash \neg F \lor G$ 2. $\Sigma \vdash F$ Premise3. $\Sigma \vdash F \Rightarrow G$ \Rightarrow -Def applied to 14. $\Sigma \vdash G$ \Rightarrow -Elim applied to 2 and 3

We can use the above derivation as a sub-procedure and introduce the following proof rule.

$$\lor -\text{MODUSPONENS} \frac{\Sigma \vdash \neg F \lor G}{\Sigma \vdash G} \xrightarrow{\Sigma \vdash F}$$

Example: implication

Example 5.1 Let us prove $\{(\neg p \lor r), (p \lor \neg q)\} \vdash (q \Rightarrow p \land r).$

1.
$$\{(\neg p \lor r), (p \lor \neg q)\} \cup \{q\} \vdash q$$
Assumption2. $\{(\neg p \lor r), (p \lor \neg q)\} \cup \{q\} \vdash (p \lor \neg q)$ Assumption3. $\{(\neg p \lor r), (p \lor \neg q)\} \cup \{q\} \vdash (\neg q \lor p)$ \lor -Symm applied to 24. $\{(\neg p \lor r), (p \lor \neg q)\} \cup \{q\} \vdash p$ \lor -ModusPonens applied to 1 and 35. $\{(\neg p \lor r), (p \lor \neg q)\} \cup \{q\} \vdash (\neg p \lor r)$ Assumption6. $\{(\neg p \lor r), (p \lor \neg q)\} \cup \{q\} \vdash r$ \lor -ModusPonens applied to 4 and 57. $\{(\neg p \lor r), (p \lor \neg q)\} \cup \{q\} \vdash p \land r$ \land -Intro applied to 4 and 68. $\{(\neg p \lor r), (p \lor \neg q)\} \vdash (q \Rightarrow p \land r)$ \Rightarrow -Intro applied to 7

I drink water when it rains or when it does not.

A convoluted way of saying something is always true.

Derived rules: tautology rule

Theorem 5.2 For any F and a set Σ of formulas, we can always derive $\Sigma \vdash \neg F \lor F$.

Proof.	
1. $\Sigma \cup \{F\} \vdash F$	Assumption
2. $\Sigma \vdash F \Rightarrow F$	\Rightarrow -Intro applied to 1
3. $\Sigma \vdash \neg F \lor F$	\Rightarrow -Def applied to 2

Again, we can introduce the following proof rule.

TAUTOLOGY
$$\overline{\Sigma \vdash \neg F \lor F}$$

Contradiction

If I eat a cake and not eat it, then sun is cold

In logic, once we introduce an absurdity (formally contradiction), there are no limits in absurdity.

Commentary: To explain the importance of logic. Once Bertrand Russell made the following argument, 1. 2+2=5 2. 4=5 3. 4=3= 5-34. 1=2 5. I and Pope are two. 6. I and Pope are one. 6. I am Pope. 000

0) CS228 Logic for (Computer Science 2020	Instructor: Ashutosh Gupta	IITB, India	8
---	---------------------	-----------------------	----------------------------	-------------	---

Derived rules: contradiction rule

Theorem 5.3 If we have $\Sigma \vdash F \land \neg F$, we can always derive $\Sigma \vdash G$.

Proof.

1. $\Sigma \vdash F \land \neg F$	Premise
2. $\Sigma \vdash \neg F \land F$	$\wedge ext{-Symm}$ applied to 1
3. $\Sigma \vdash \neg F$	\wedge -Elim applied to 2
4. $\Sigma \vdash \neg F \lor G$	\lor -Intro applied to 3
5. $\Sigma \vdash F$	$\wedge ext{-Elim}$ applied to 1
6. $\Sigma \vdash G$	$\wedge\text{-Modus}$ Ponens applied to 4 and 5

Therefore, we may declare the following derived proof rule

$$CONTRA \frac{\Sigma \vdash \neg F \land F}{\Sigma \vdash G}$$

Contrapositive

I think, therefore I am. -Descartes ↔ I am not, therefore I do not think.

In an argument, negation of the conclusion implies negation of premises.

Derived rules: contrapositive rule Theorem 5.4				
If we have $\Sigma \cup \{F\} \vdash G$, we can always derive $\Sigma \cup \{\neg G\} \vdash \neg F$.				
Proof.				
1. $\Sigma \cup \{F\} \vdash G$	Premise			
2. $\Sigma \cup \{F\} \vdash \neg \neg G$	DoubleNeg applied to 1			
3. $\Sigma \vdash F \Rightarrow \neg \neg G$	\Rightarrow -Intro applied to 2			
4. $\Sigma \vdash \neg F \lor \neg \neg G$	\Rightarrow -Def applied to 3			
5. $\Sigma \vdash \neg \neg G \lor \neg F$	\lor -Symm applied to 4			
6. $\Sigma \vdash (\neg G \Rightarrow \neg F)$	\Rightarrow -Def applied to 5			
7. $\Sigma \cup \{\neg G\} \vdash (\neg G \Rightarrow \neg F)$	Monotonic applied to 6			
8. $\Sigma \cup \{\neg G\} \vdash \neg G$	Assumption			
9. $\Sigma \cup \{\neg G\} \vdash \neg F$	\Rightarrow -Elim applied to 7 and 8 \square			
Therefore, we may declare the following derived proof rule				

$$CONTRAPOSITIVE \frac{\Sigma \cup \{F\} \vdash G}{\Sigma \cup \{\neg G\} \vdash \neg F}$$

Proof by cases and contradiction

We must have seen proof by cases and contradiction.

Proof by cases

If I have money, I run. If I do not have money, I run. Therefore, I run.

Proof by contradiction

Assume, I ate a dinosaur.

My tummy is far smaller than a dianour. Contradiction. Therefore, I did not eat dinosaur.

Derived rules: proof by cases

Theorem 5.5If we have $\Sigma \cup \{F\} \vdash G$ and $\Sigma \cup \{\neg F\} \vdash G$, we can always derive $\Sigma \vdash G$.Proof.1. $\Sigma \cup \{F\} \vdash G$ Premise2. $\Sigma \cup \{\neg F\} \vdash G$ Premise3. $\Sigma \vdash F \lor \neg F$ Tautology4. $\Sigma \vdash G$ V-Elim applied to 1,2, and 3

Therefore, we may declare the following derived proof rule

$$\operatorname{BYCASES} \frac{\Sigma \cup \{F\} \vdash G \quad \Sigma \cup \{\neg F\} \vdash G}{\Sigma \vdash G}$$

Commentary: Sorry for the confusion in the class! There was a minor error.

13

Derived rules: proof by contradiction

Theorem 5.6 If we have $\Sigma \cup \{F\} \vdash G$ and $\Sigma \cup \{F\} \vdash \neg G$, we can always derive $\Sigma \vdash \neg F$.

Proof.

1. $\Sigma \cup \{F\} \vdash G$ Premise2. $\Sigma \cup \{F\} \vdash \neg G$ Premise3. $\Sigma \cup \{\neg G\} \vdash \neg F$ Contrapositive applied to 14. $\Sigma \cup \{\neg \neg G\} \vdash \neg F$ Contrapositive applied to 25. $\Sigma \vdash \neg F$ ByCases 3 and 4

Therefore, we may declare the following derived proof rule

$$\operatorname{ByContra} \frac{\Sigma \cup \{F\} \vdash G \qquad \Sigma \cup \{F\} \vdash \neg G}{\Sigma \vdash \neg F}$$

Reverse Double Negation

I do not dislike apples.

Therefore, I like apples.

Reverse Double Negation

Theorem 5.7 If we have $\Sigma \vdash \neg \neg F$, we can always derive $\Sigma \vdash F$.

Proof.

1. $\Sigma \vdash \neg \neg F$ Premise2. $\Sigma \cup \{\neg F\} \vdash \neg \neg F$ Monotonic applied to 13. $\Sigma \cup \{\neg F\} \vdash \neg F$ Assumption4. $\Sigma \cup \{\neg F\} \vdash \neg F \land \neg \neg F$ \land -Intro applied to 2 and 35. $\Sigma \cup \{\neg F\} \vdash F$ Contradiction applied to 46. $\Sigma \cup \{F\} \vdash F$ Assumption7. $\Sigma \vdash F$ Proof by cases applied to 5 and 6 \Box

Therefore, we may declare the following derived proof rule

REVDOBULENEG
$$\frac{\Sigma \vdash \neg \neg F}{\Sigma \vdash F}$$

Derived rules : Resolution

Theorem 5.8 If we he have $\Sigma \vdash \neg F \lor G$ and $\Sigma \vdash F \lor H$, we can derive $\Sigma \vdash G \lor H$.

Proof.

- 1. $\Sigma \vdash \neg F \lor G$ 2. $\Sigma \cup \{F\} \vdash \neg F \lor G$ 3. $\Sigma \cup \{F\} \vdash F$ 4. $\Sigma \cup \{F\} \vdash G$
- 5. $\Sigma \cup \{F\} \vdash G \lor H$
- 6. $\Sigma \vdash F \lor H$
- 7. $\Sigma \cup \{F\} \vdash \neg \neg F$
- 8. $\Sigma \cup \{F\} \vdash \neg \neg F \lor H$ 9. $\Sigma \cup \{H\} \vdash H$

- Premise
- Monotonic applied to 1
 - Assumption
- Modes Ponens applied to 2 and 3
 - \lor -Intro applied to 4

Premise

- DoubleNeg applied to 3
 - \lor -Intro applied to 7
 - Assumption

Derived rules : Resolution (contd.)

- 10. $\Sigma \cup \{H\} \vdash H \lor \neg \neg F$ 11. $\Sigma \cup \{H\} \vdash \neg \neg F \lor H$ 12. $\Sigma \vdash \neg \neg F \lor H$
 - 13. $\Sigma \cup \{\neg F\} \vdash \neg \neg F \lor H$ 14. $\Sigma \cup \{\neg F\} \vdash \neg F$ 15. $\Sigma \cup \{\neg F\} \vdash H$ 16. $\Sigma \cup \{\neg F\} \vdash H \lor G$ 17. $\Sigma \cup \{\neg F\} \vdash G \lor H$ 18. $\Sigma \vdash G \lor H$

- \lor -Intro applied to 9
- \lor -Symm applied to 10
- \lor -Elim applied to 6,8, and 11
 - Monotonic applied to 12 Assumption
- Modes Ponens applied to 13 and 14
 - \lor -Intro applied to 15
 - \lor -Symm applied to 16
 - Proof by cases applied to 5 and 17

Therefore, we may declare the following derived proof rule

$$\operatorname{RESOLUTON} \frac{\Sigma \vdash F \lor G \quad \Sigma \vdash \neg F \lor H}{\Sigma \vdash G \lor H}$$

Soundness

We need to show that

Theorem 5.9

if

proof rules derive a statement $\Sigma \vdash F$

then

$\Sigma \models F$.

Proof.

We will make an inductive argument. We will assume that the theorem holds for the premises of the rules and show that it is also true for the conclusions.

... ©®®@

Proving soundness

- Proof(contd.)
- Consider the following rule

$$\wedge - \operatorname{ELIM} \frac{\Sigma \vdash F \land G}{\Sigma \vdash F}$$

Consider assignment $m \models \Sigma$. By the induction hypothesis, $m \models F \land G$.

Using the truth table, we can show that if $m \models F \land G$ then $m \models F$.

m(F)	m(G)	$m(F \wedge G)$
0	0	0
0	1	0
1	0	0
1	1	1

Therefore, $\Sigma \models F$.

Proof

Proof. Consider one more rule

$$\Rightarrow -\text{INTRO}\frac{\Sigma \cup \{F\} \vdash G}{\Sigma \vdash F \Rightarrow G}$$

Consider assignment $m \models \Sigma$. There are two possibilities.

case m ⊨ F: Therefore, m ⊨ Σ ∪ {F}. By the induction hypothesis, m ⊨ G. Therefore, m ⊨ (F ⇒ G).
case m ⊭ F: Therefore, m ⊨ (F ⇒ G).
Therefore, Σ ⊢ F ⇒ G.

Similarly, we need to draw truth table or case analysis for each of the rules to check the soundness. $\hfill\square$

21

Mathematics vs. computer science

So far we see rules of reasoning.

We have seen that the rules are correct and will see in a few lectures that they are also sufficient, i.e., all true statements are derivable.

Our inner mathematician is happy!!

However, our inner computer scientist is unhappy

- Too many rules dozens of rules
- no instructions (or algorithm) for applying them on a given problem

We will embark upon simplifying and automating the reasoning process.

Topic 5.2

Problems

Formal proofs

Exercise 5.1

Prove that the following statements

1.
$$\{(p \Rightarrow q), (p \lor q)\} \vdash q$$

2. $\{(p \Rightarrow q), (q \Rightarrow r)\} \vdash \neg(\neg r \land p)$
3. $\{(q \lor (r \land s)), (q \Rightarrow t), (t \Rightarrow s)\} \vdash s$
4. $\{(p \lor q), (r \lor s)\} \vdash ((p \land r) \lor q \lor s)$
5. $\{(((p \Rightarrow q) \Rightarrow q) \Rightarrow q)\} \vdash (p \Rightarrow q)$
6. $\emptyset \vdash (p \Rightarrow (q \lor r)) \lor (r \Rightarrow \neg p)$
7. $\{p\} \vdash (q \Rightarrow p)$
8. $\{(p \Rightarrow (q \Rightarrow r))\} \vdash ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$
9. $\{(\neg p \Rightarrow \neg q)\} \vdash (q \Rightarrow p)$

Attendence quiz

```
Which of the following is a derived proof rule? Let / be the derivation line.

\begin{split} & & \sum \cup \{F\} \vdash G, \Sigma \cup \{F\} \vdash G/\Sigma \vdash G \\ & & \sum \cup \{F\} \vdash G, \Sigma \cup \{F\} \vdash \neg G/\Sigma \vdash F \\ & & \sum \vdash \neg F/\Sigma \vdash \neg F \\ & & \sum \cup \{F\} \vdash G/\Sigma \cup \{G\} \vdash F \\ & & \sum \vdash \neg F \lor F/\Sigma \vdash G \\ & & \sum \vdash F \lor \neg G, \Sigma \cup \{-F\} \vdash G/\Sigma \vdash G \\ & & \sum \cup \{F\} \vdash G, \Sigma \cup \{-F\} \vdash G/\Sigma \vdash \neg F \\ & & \sum \vdash \neg F/\Sigma \vdash F \\ & & \sum \vdash \neg F/\Sigma \vdash F \\ & & \sum \cup \{F\} \vdash G/\Sigma \cup \{\neg G\} \vdash \neg F \\ & & \sum \vdash \neg F \land F/\Sigma \vdash G \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash \neg F \lor F \\ & & = \sum \vdash F \lor F \lor F \\ & & = \sum \vdash F \lor F \lor F \\ & & = \sum \vdash F \lor F \lor F \lor F \\ & & = \sum \vdash F \lor F \lor F \lor F \\ & & = \sum \vdash F \lor F \lor F \lor F \lor F  & & = \sum \vdash \neg F \lor F \lor F \lor F \vdash F \lor F \lor F
```

```
\Sigma \vdash \neg F \lor G, \Sigma \vdash F / \Sigma \vdash G
```


End of Lecture 5

