CS228 Logic for Computer Science 2020

Lecture 6: Substitution and equivalences

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-01-23

Simplifications for formulas

If we wish to develop algorithms for proof generation, we need more structure in our input.

For example, we simplify equations like 2x + 3 = 1 - x, before solving them.

We will develop methods for simplification or turning into normal forms.

Topic 6.1

Structural induction

Principle of structural induction

In order to prove, theorems we need to get used to the principle of structural induction.

Theorem 6.1

Every formula in P has a property Q if

- Base case: every atomic formula has property Q
- ▶ induction steps: if $F, G \in \mathbf{P}$ have property Q so do $\neg F$ and $(F \circ G)$, where \circ is a binary symbol

Now we will see an important use of the structural induction.

Topic 6.2

Substitution theorems

Substitutions

Substitution is an important operation in logic.

Intuitively, we should be able to substitute equivalent subformulas without altering the truth values of formulas.

However, we need a proof to enable us.

Substitution theorem

Theorem 6.2

Let F(p), G, and H be formulas. For some assignment m,

if
$$m \models G$$
 iff $m \models H$ then $m \models F(G)$ iff $m \models F(H)$

Proof.

Assume $m \models G$ iff $m \models H$.

We prove the theorem using structural induction over the structure of F.

base case:

F(p) is atomic.

If F(p) = p, then F(G) = G and F(H) = H. Therefore, hyp holds.

If $F(p) \neq p$, then F(p) = F(G) = F(H). Again, hyp holds.

Substitution theorem (contd.)

Proof(contd.)

induction step:

Suppose $F(p) = F_1(p) \circ F_2(q)$ for some binary connective \circ .

Due to induction hypotheses,

$$m \models F_1(G)$$
 iff $m \models F_1(H)$, and $m \models F_2(G)$ iff $m \models F_2(H)$.

Due to the semantics of the propositional logic,

$$m \models F_1(G) \circ F_2(G)$$
 iff $m \models F_1(H) \circ F_2(H)$.

Therefore,
$$m \models F(G)$$
 iff $m \models F(H)$.

The negation case is symmetric.

Equivalence generalization theorem

Theorem 6.3

If $F(p) \equiv G(p)$ then for each formula H, $F(H) \equiv G(H)$.

Proof.

Wlog, we assume p does not appear in $H_{(why?)}$

Assume $m \models F(H)$ for some m.

Let b be 1 if $m \models H$ otherwise 0. Let $m' = m[p \mapsto b]$.

Therefore, $m' \models p$ iff $m' \models H$, and $m' \models F(H)$.(why?)

Due to Thm 6.2, $m' \models F(p)$.

Due to lhs of the theorem, $m' \models G(p)$.

Due to Thm 6.2, $m' \models G(H)$.

Since $p \notin \mathbf{Vars}(G(H))$, $m \models G(H)$.

Similarly, we assume $m \not\models F(H)$ and prove $m \not\models G(H)$.

Exercise 6.1

Extend the argument for simultaneous substitutions.

Writing equivalences

The previous theorem allows us to first prove equivalences between formulas over variables then use it for arbitrary formulas.

We will state equivalences using variables instead of generic formulas.

Example 6.1

Since $\neg \neg p \equiv p$, we can deduce $\neg \neg (q \oplus r) \equiv (q \oplus r)$

Subformula Replacement Theorem

Theorem 6.4

Let G,H and F(p) be formulas. If $G \equiv H$ then $F(G) \equiv F(H)$.

Proof.

Due to Thm 6.2, straight forward.

The above theorem allows us to use known equivalences to modify formulas.

Example 6.2

Since we know
$$\neg\neg(q\oplus r)\equiv(q\oplus r)$$
, $(\neg\neg(q\oplus r)\Rightarrow(r\land q))\equiv((q\oplus r)\Rightarrow(r\land q))$

Exercise 6.2

- a. Complete the arguments in the above proof.
- b. extend the argument for simultaneous substitutions.

Topic 6.3

Equivalences

Equivalences

- Let us go over a list of useful and easy equivalences for simplification of formulas
- We need to prove their correctness using truth tables. However, we will not present the truth tables in the slides in this lecture.

Constant connectives

$$ightharpoons$$
 op op op op op op

$$ightharpoons$$
 $ightharpoons$ $ightharpoon$

$$ightharpoonup$$
 $ightharpoonup$ \Rightarrow $p \equiv p$

$$ightharpoonup p \Rightarrow \top \equiv \top$$

$$ightharpoons$$
 $op op op$

$$ightharpoonup \perp \wedge p \equiv \perp$$

$$ightharpoonup \perp \lor p \equiv p$$

$$ightharpoonup \perp \oplus p \equiv p$$

$$ightharpoonup \perp \Rightarrow p \equiv \top$$

Exercise 6.3

Simplify, the following formulas using the above equivalences

- ightharpoons op op op
- ightharpoonup $(T \oplus T) \oplus T$

Attendance quiz

Which of the following simplify to \top ?

$$\neg \bot$$
, $\neg p \lor p$, $\top \lor p$, $\top \oplus \bot$, $\top \oplus \top \oplus \top$, $\bot \Leftrightarrow \bot$, $p \Rightarrow \top$, $\bot \Rightarrow p$,

$$\neg \top$$
, $\neg p \land p$, $\top \land p$, $\top \oplus \top$, $\top \oplus \bot \oplus \top$, $\top \Leftrightarrow \bot$, $\top \Rightarrow p$, $p \Rightarrow \bot$,

Negation and the other connectives

$$\neg \neg p \equiv p$$

$$ightharpoonup \neg (p \lor q) \equiv \neg p \land \neg q$$

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$ightharpoonup \neg (p \Rightarrow q) \equiv p \land \neg q$$

$$ightharpoonup \neg (p \oplus q) \equiv \neg p \oplus q \equiv p \Leftrightarrow q$$

$$ightharpoonup \neg (p \Leftrightarrow q) \equiv p \oplus q$$

(DeMorgan's Law)

(DeMorgan's Law)

Expanded DeMorgan

Theorem 6.5

$$\neg(\bigvee_{i=0}^m F_i) \equiv \bigwedge_{i=0}^m \neg F_i$$

Proof.

We prove it by induction on m.

base case:

If m = 0, there is nothing to prove because both sides are same.

induction step:

Let us assume $\neg(\bigvee_{i=0}^m F_i) \equiv \bigwedge_{i=0}^m \neg F_i$

Now consider

$$\neg(\bigvee_{i=0}^{m+1} F_i)$$

$$\equiv \neg(\bigvee_{i=0}^{m} F_i \vee F_{m+1})$$

$$\equiv \neg \bigvee_{i=0}^{m} F_i \wedge \neg F_{m+1}$$

DeMorgan Rule

Due to substitution theorem

Associativity

 \land , \lor , \oplus are associative

Due to associativity, we do not need parentheses in the following formulas

$$\triangleright p_1 \wedge \cdots \wedge p_k = \bigwedge_{i=1}^k p_i$$

$$\triangleright p_1 \vee \cdots \vee p_k = \bigvee_{i=1}^k p_i$$

$$\triangleright p_1 \oplus \ldots \oplus p_k = \bigoplus_{i=1}^k p_i$$

The drop of parentheses is called flattening.

Exercise 6.4

 $Prove/Disprove \Leftrightarrow is associative.$

Commutativity

 \land , \lor , \oplus , \Leftrightarrow are commutative

- $(p \wedge q) \equiv (q \wedge p)$
- $(p \lor q) \equiv (q \lor p)$
- $(p \oplus q) \equiv (q \oplus p)$
- $(p \Leftrightarrow q) \equiv (q \Leftrightarrow p)$

Absorption law

- $\triangleright p \land p \Leftrightarrow p$
- $ightharpoonup p \lor p \lor p \Leftrightarrow p$

Due to associativity, commutativity and absorption law, we define the following notation with a clear meaning

- $\bigvee \{p_1, \ldots, p_k\} \triangleq p_1 \vee \cdots \vee p_k$

Distributivity

 \wedge , \vee distribute over each other

Exercise 6.5

Prove/Disprove the following equivalences

$$ightharpoonup p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$$

$$(p \land q) \Rightarrow r \equiv (p \Rightarrow r) \land (q \Rightarrow r)$$

$$(p \lor q) \Rightarrow r \equiv (p \Rightarrow r) \lor (q \Rightarrow r)$$

Exercise: prove extended distributivity

Exercise 6.6

Using induction and the distributivity property, show the following

$$\bigvee_{i=0}^{m}\bigwedge_{j=0}^{n_i}G_{ij}\equiv\bigwedge_{j_1=0}^{n_1}\ldots\bigwedge_{j_m=0}^{n_m}\bigvee_{i=0}^{m}G_{ij_i}$$

Properties of \oplus

- ightharpoons ightharpoon
- $ightharpoonup \perp \oplus p \equiv p$
- $ightharpoonup p \oplus p \equiv \bot$
- $p \oplus \neg p \equiv \top$
- $(p \oplus q) \equiv (p \vee q) \wedge (\neg p \vee \neg q)$
- $(p \Leftrightarrow q) \equiv (p \vee \neg q) \wedge (q \vee \neg p)$

Simplify

- ▶ All tools include a simplify procedure using the presented equivalences
- → and ⇔ are difficult connectives, because they result in larger formula if one aims to remove them. We will learn soon how to deal with the operators.

Topic 6.4

Problems

Simplifications

Exercise 6.7

Show $\underbrace{p_1 \oplus \ldots \oplus p_n}_{n}$ counts odd number of one's in $p_1, ..., p_n$.

Exercise 6.8

Similar to the above problem characterize the following.

$$\underbrace{p_1 \Leftrightarrow \ldots \Leftrightarrow p_n}_n$$

Exercise 6.9

Simplify

$$\underbrace{p \oplus \ldots \oplus p}_{p} \oplus \underbrace{\neg p \oplus \ldots \oplus \neg p}_{k} \equiv ?$$

Exercise 6.10

Simplify

$$(p \lor (p \oplus v)) \Rightarrow (p \land q) \land (r \land \neg p)$$

Encoding if-then-else

Some propositional logic may also include a ternary operator ite(p, q, r), which encodes that if p is true then q is true, otherwise r is true.

Exercise 6.11

Show the following two encodings of ite(p, q, r) are equivalent.

- 1. $(p \wedge q) \vee (\neg p \wedge r)$
- 2. $(p \Rightarrow q) \land (\neg p \Rightarrow r)$

Simplify

Exercise 6.12

Show the following equivalence holds.

- $ightharpoonup F \lor G \equiv F \lor G[F \mapsto \bot]$
- $ightharpoonup F \wedge G \equiv F \wedge G[F \mapsto \top]$

Note that the above is unusual substitution

End of Lecture 6