
cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 1

CS228 Logic for Computer Science 2020

Lecture 7: Conjunctive Normal Form

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-02-01

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 2

Removing ⊕, ⇒, and ⇔.

We have seen equivalences that remove ⊕, ⇒, and ⇔ from a formula.

I (p ⇒ q) ≡ (¬p ∨ q)

I (p ⊕ q) ≡ (p ∨ q) ∧ (¬p ∨ ¬q)

I (p ⇔ q) ≡ ¬(p ⊕ q)

In the lecture, we will assume you can remove them at will.

Commentary: Note that removal of ⊕ and⇔ blows up the formula size. Their straight up removal is not desirable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 3

Topic 7.1

Negation normal form

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 4

Negation normal form(NNF)

Definition 7.1
A formula is in NNF if ¬ appears only in front of the propositional variables.

Theorem 7.1
For every formula F , there is a formula F ′ in NNF such that F ≡ F ′.

Proof.
Due to the equivalences, we can always push ¬ under the connectives

I Often we assume that the formulas are in NNF.

I However, there are negations hidden inside ⊕, ⇒, and ⇔. Sometimes,
the symbols are also expected to be removed while producing NNF

Exercise 7.1
Write an efficient algorithm to convert a propositional formula to NNF?

Commentary: In our context, we will not ask one to remove e ⊕,⇒, and⇔ during conversion to NNF.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 5

Example :NNF

Example 7.1

Consider ¬(q ⇒ ((p ∨ ¬s)⊕ r))
≡ q ∧ ¬((p ∨ ¬s)⊕ r)
≡ q ∧ (¬(p ∨ ¬s)⊕ r)
≡ q ∧ ((¬p ∧ ¬¬s)⊕ r)
≡ q ∧ ((¬p ∧ s)⊕ r)

Exercise 7.2
Convert the following formulas into NNF

I ¬(p ⇒ q)

I ¬(¬((s ⇒ ¬(p ⇔ q)))⊕ (¬q ∨ r))

Exercise 7.3
Remove ⇒, ⇔, and ⊕ before turning the above into NNF.

Exercise 7.4
Are there any added difficulties if the formula is given as a DAG not as a tree?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 6

Formal derivation for NNF

Theorem 7.2
Let F ′ be the NNF of F . If we have Σ ` F , then we can derive Σ ` F ′.

Proof.
We combine the following pieces of proofs for each step of the
transformation.

I Derivations for Substitutions.

I Derivations for pushing negations inside connectives.

Therefore, we have the derivations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 7

Topic 7.2

Conjunctive normal form

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 8

Some terminology

I Propositional variables are also referred as atoms

I A literal is either an atom or its negation

I A clause is a disjunction of literals.

Since ∨ is associative, commutative and absorbs multiple occurrences, a
clause may be referred as a set of literals

Example 7.2

I p is an atom but ¬p is not.

I ¬p and p both are literals.

I p ∨ ¬p ∨ p ∨ q is a clause.

I {p,¬p, q} is the same clause.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 9

Conjunctive normal form(CNF)

Definition 7.2
A formula is in CNF if it is a conjunction of clauses.

Since ∧ is associative, commutative and absorbs multiple occurrences, a CNF
formula may be referred as a set of clauses

Example 7.3

I ¬p and p both are in CNF.

I (p ∨ ¬q) ∧ (r ∨ ¬q) ∧ ¬r in CNF.

I {(p ∨ ¬q), (r ∨ ¬q),¬r} is the same CNF formula.

I {{p,¬q}, {r ,¬q}, {¬r}} is the same CNF formula.

Exercise 7.5
Write a formal grammar for CNF

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 10

Attendance quiz

Which of the following formulas are in CNF?

p, ¬p, p ∨ ¬p, p ∨ q , p ∧ q , ¬p ∧ q, (p ∨ q) ∧ p, (p ∨ q) ∧ (¬p ∧ q),
(p ∨ q) ∧ (¬p ∨ q), (p ∧ q) ∧ (¬p ∧ q) (p ∨ q) ∨ (¬p ∨ q),

¬(p ∨ q), p ⊕ q, p ⇒ q, p ⇔ q, (p ∧ q) ∨ r , (p ∧ q) ∨ (¬p ∨ q),
(p ∨ q) ∨ (¬p ∧ r), (p ∧ q) ∨ (¬p ∧ r), ¬(p ∧ q),

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 11

CNF conversion

Theorem 7.3
For every formula F there is another formula F ′in CNF s.t. F ≡ F ′.

Proof.
Let us suppose we have

I removed ⊕, ⇒, ⇔ using the standard equivalences,

I converted the formula in NNF with removal of ⇒, ⇔, and ⊕, and

I flattened ∧ and ∨.

Now the formulas have the following form with literals at leaves.

∨
.. ∧

.. ∨

..

Since ∨ distributes over ∧, we can always push ∨ inside ∧.

Eventually, we will obtain a formula that is CNF.

After the push formula
size grows! Why should
the procedure terminate?

Are we done?

Commentary: The above is a good example of an algorithm that has intuitively clear, but formally non-trivial termination argument.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 12

CNF conversion terminates

Theorem 7.4
The procedure of converting a formula in CNF terminates.

Proof.
For a formula F , let ν(F) , the maximum height of ∨ to ∧ alternations in F .
Consider a formula F (G) such that

G =
m∨
i=0

ni∧
j=0

Gij .

After the push we obtain F (G ′), where

G ′ =

n1∧
j1=0

. . .

nm∧
jm=0

m∨
i=0

Giji︸ ︷︷ ︸
ν()<ν(G)

Observations

I G ′ is either the top formula or the parent connective(s) are ∧
I Gij is either a literal or an ∨ formula

We need to apply flattening to keep F (G ′) in the form(of the previous slide). ...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 13

CNF conversion terminates (contd.)

(contd.)

Due to Köing lemma, the procedure terminates.(why?)

Exercise 7.6
Consider a set of balls that are labelled with positive numbers. We can
replace a k labelled ball with any number of balls with labels less than k.
Using Köing lemma, show that the process always terminates.

Hint: in the above exercise, the bag is the subformulas of F (G).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 14

CNF examples

Example 7.4

Consider (p ⇒ (¬q ∧ r)) ∧ (p ⇒ ¬q)
≡ (¬p ∨ (¬q ∧ r)) ∧ (¬p ∨ ¬q)
≡ ((¬p ∨ ¬q) ∧ (¬p ∨ r)) ∧ (¬p ∨ ¬q)
≡ (¬p ∨ ¬q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬q)

Exercise 7.7
Convert the following formulas into CNF

1. ¬((p ⇒ q)⇒ ((q ⇒ r)⇒ (p ⇒ r)))

2. (p ⇒ (¬q ⇒ r)) ∧ (p ⇒ ¬q)⇒ (p ⇒ r)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 15

Formal derivation for CNF

Theorem 7.5
Let F ′ be the CNF of F . If we have Σ ` F , then we can derive Σ ` F ′.

Proof.
We combine the following pieces of proofs for each step of the
transformations.

I Derivations for NNF

I Derivations for substitutions that removes ⇒, ⊕, and ⇔
I Derivations for substitutions that flattens ∧ and ∨
I Derivations for substitutions that applies distributivity

Therefore, we have the derivations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 16

Conjunctive normal form(CNF) more notation

I A unit clause contains only one literal.

I A binary clause contains two literals.

I A ternary clause contains three literals.

I We naturally extend definition of the clauses to the empty set of literals.
We refer to ⊥ as empty clause.

Example 7.5

I (p ∧ q ∧ ¬r) has three unit clauses

I (p ∨ ¬q ∨ ¬s) ∧ (p ∨ q) ∧ ¬r has a ternary, a binary and a unit clause

Exercise 7.8
a. Show F ′ obtained from the procedure may be exponentially larger than F
b. Give a linear time algorithm to prove validity of a CNF formula
c. What is the interpretation of empty set of clauses?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 17

CNF is desirable

I Fewer connectives

I Simple structure

I Many problems naturally encode into CNF.
We will see this in couple of lectures.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 18

How do we get to CNF?

I The transformation using distributivity explodes the formula

I Is there a way to avoid the explosion?

I Yes! there is a way.

Tseitin’s encoding
But, with a cost.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 19

Tseitin’s encoding (Plaisted-Greenbaum optimization included)

We can translate every formula into CNF without exponential explosion using
Tseitin’s encoding by introducing fresh variables.

1. Assume input formula F is NNF without ⊕, ⇒, and ⇔.

2. Find a G1 ∧ · · · ∧ Gn that is just below a ∨ in F (G1 ∧ · · · ∧ Gn)

3. Replace F (G1 ∧ ..∧Gn) by F (p)∧ (¬p ∨G1)∧ ..∧ (¬p ∨Gn), where p is
a fresh variable

4. goto 2

Exercise 7.9
Modify the encoding such that it works without the assumptions at step 1

Commentary: Hint: Download sat solver $wget http://fmv.jku.at/limboole/limboole1.1.tar.gz look for function tseitin in file
limboole.c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 20

Example: linear cost of Tseitin’s encoding

Example 7.6

Consider formula (p1 ∧ · · · ∧ pn) ∨ (q1 ∧ · · · ∧ qm)

Using distributivity, we obtain the following CNF containing mn clauses.∧
i∈1..n,j∈1..m

(pi ∨ qj)

Using Tseitin’s encoding, we obtain the following CNF containing m + n + 1
clauses, where x and y are the fresh Boolean variables.

(x ∨ y) ∧
∧

i∈1..n

(¬x ∨ pi) ∧
∧

j∈1..m

(¬y ∨ qj)

Exercise 7.10
Convert the following formulas into CNF using Tseitin’s encoding

1. (p ⇒ (¬q ∧ r)) ∧ (p ⇒ ¬q)

2. (p ⇒ q) ∨ (q ⇒ ¬r) ∨ (r ⇒ q)⇒ ¬(¬(q ⇒ p)⇒ (q ⇔ r))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 21

Tseitin’s encoding preserves satisfiability

Theorem 7.6
if m |= F (p) ∧ (¬p ∨ G1) ∧ · · · ∧ (¬p ∨ Gn) then m |= F (G1 ∧ · · · ∧ Gn)

Proof.
Assume m |= F (p) ∧ (¬p ∨ G1) ∧ · · · ∧ (¬p ∨ Gn). We have three cases.

First case m |= p:

I Therefore, m |= Gi for all i ∈ 1..n.

I Therefore, m |= G1 ∧ · · · ∧ Gn.

I Due to the substitution theorem, m |= F (G1 ∧ · · · ∧ Gn).

Second case m 6|= p and m 6|= G1 ∧ · · · ∧ Gn:

I Due to the substitution theorem, m |= F (G1 ∧ · · · ∧ Gn)

...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 22

Tseitin’s encoding preserves satisfiability(contd.)

Proof(contd.)

Third case m 6|= p and m |= G1 ∧ · · · ∧ Gn:

I Since F (G1 ∧ · · · ∧ Gn) is in NNF, p occurs only positively in F (p).

I Therefore, m[p 7→ 1] |= F (p)(why?).

I Since p does not occur in Gi s, m[p 7→ 1] |= G1 ∧ · · · ∧ Gn.

I Due to the substitution theorem, m[p 7→ 1] |= F (G1 ∧ · · · ∧ Gn)

I Therefore, m |= F (G1 ∧ · · · ∧ Gn).

Exercise 7.11
Show if 6|= F (p) ∧ (¬p ∨ G1) ∧ .. ∧ (¬p ∨ Gn) then 6|= F (G1 ∧ .. ∧ Gn)

Wisdom: any transformation that introduces a fresh symbols
most likely looses either equisatisfiability or equivalidity.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 23

Topic 7.3

Disjunctive normal form

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 24

Disjunctive normal form(DNF)

Definition 7.3
A formula is in DNF if it is a disjunction of conjunctions of literals.

Theorem 7.7
For every formula F there is another formula F ′in DNF s.t. F ≡ F ′.

Proof.
Proof is similar to CNF.

Exercise 7.12
a. Give the formal grammar of DNF
b. Give a linear time algorithm to prove satisfiability of a DNF formula

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 25

Topic 7.4

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 26

CNF and DNF

Exercise 7.13
Give an example of a non-trivial formula that is both CNF and DNF

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 27

CNF

Exercise 7.14
Convert the following formulas into CNF

1. (p ⇒ q) ∨ (q ⇒ ¬r) ∨ (r ⇒ q)⇒ ¬(¬(q ⇒ p)⇒ (q ⇔ r))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 28

CNF vs. DNF

Exercise 7.15
Give a class of Boolean functions that can be represented using linear size
DNF formula but can only be represented by an exponential size CNF
formula.

Exercise 7.16
Give a class of Boolean functions that can be represented using linear size
CNF formula but can only be represented by an exponential size DNF
formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 29

P=NP argument

Exercise 7.17
What is wrong with the following proof of P=NP? Give counterexample.

Tseitin’s encoding does not explode and proving validity of CNF formulas has
a linear time algorithm. Therefore, we can convert every formula into CNF in
polynomial time and check validity in linear time. As a consequence, we can
check satisfiability of F in linear time by checking validity of ¬F in linear
time.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 30

Algebraic normal form(ANF)

ANF formulas are defined using the following grammar.

A ::=> | ⊥ | p
C ::=A ∧ C |A

ANF ::=C ⊕ ANF |C

Exercise 7.18
a. Give an efficient algorithm to covert any formula into equivalent ANF
formula.
b. Give an efficient algorithm to covert any formula into equisatisfiable ANF
formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 31

Probability of satisfiability

Exercise 7.19
a. What is the probability that the conjunction of a random multiset of
literals of size k over n Boolean variables is unsatisfiable?
b. What is the probability that the conjunction of a random set of literals of
size k over n Boolean variables is unsatisfiable?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 32

And invertor graphs (AIG)

AIG formulas are defined using the following grammar.

A ::=A ∧ A|¬A|p

Exercise 7.20
Give heuristics to minimize the number of inverters in an AIG formula
without increasing the size of the formula.

Commentary: Example of such heuristics: Local Two-Level And-Inverter Graph Minimization without Blowup. Robert Brummayer and
Armin Biere, 2006.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 33

Validity

Exercise 7.21
Give a procedure like Tseitin’s encoding that converts a formula into another
equi-valid DNF formula. Prove correctness of your transformation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 34

Exercise: linear NNF transformation

Exercise 7.22
Let us suppose we have access to the parse tree of a formula, which is
represented as a directed acyclic graph (DAG) (not as a tree). Write an
algorithm that produces negation normal form (NNF) of the formula in linear
time in terms of the size of the DAG. You may assume the cost of reading
from and writing to a map data structure is constant time.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 35

Topic 7.5

Supporting slides

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 36

Köing’s Lemma

Theorem 7.8
For an infinite connected graph G , if degree of each node is finite then there
is an infinite simple path in G from each node.

Proof.
We construct an infinite simple path v1, v2, v3, ... as follows.
base case:
Choose any v1 ∈ G .Let G1 , G .
induction step:

1. Assume we have a path v1, ..., vi and an infinite connected graph Gi

such that vi ∈ Gi and v1..vi−1 6∈ Gi .

2. In Gi , there is a neighbour vi+1 ∈ Gi of vi such that infinite nodes are
reachable from vi+1 without visiting vi .(why?)

3. Let S be the reachable nodes. Let Gi+1 , Gi |S .

Exercise 7.23
Prove that any finitely-branching infinite tree must have an infinite branch.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 37

End of Lecture 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Negation normal form
	Conjunctive normal form
	Disjunctive normal form
	Problems
	Supporting slides

