
cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 1

CS228 Logic for Computer Science 2020

Lecture 8: k-SAT and XOR SAT

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-02-05

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 2

Topic 8.1

k-sat

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 3

k-sat

Definition 8.1
A k-sat formula is a CNF formula and has at most k literals in each of its
clauses

Example 8.1

I (p ∧ q ∧ ¬r) is 1-SAT

I (p ∨ ¬p) ∧ (p ∨ q) is 2-SAT

I (p ∨ ¬q ∨ ¬s) ∧ (p ∨ q) ∧ ¬r is 3-SAT

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 4

3-SAT satisfiablity

Theorem 8.1
For each k-SAT formula F there is a 3-SAT formula F ′ with linear blow up
such that F and F ′ are equivsatisfiable.

Proof.
Consider F a k-SAT formula with k ≥ 4.
Consider a clause G = (`1 ∨ · · · ∨ `k) in F , where `i are literals.

Let x2, . . . , xk−2 be variables that do not appear in F .
Let G ′ be the following set of clauses

(`1 ∨ `2 ∨ x2) ∧
∧

i∈2..k−3
(¬xi ∨ xi+1 ∨ `i+1) ∧ (¬xk−2 ∨ `k−1 ∨ `k).

We show G is sat iff G ′ is sat. ...

Exercise 8.1
Convert the following CNF in 3-SAT

I (p ∨ ¬q ∨ s ∨ ¬t) ∧ (¬q ∨ x ∨ ¬y ∨ z)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 5

3-SAT satisfiability(cont. I)

Proof(contd. from last slide).

Recall

G ′ = (`1 ∨ `2 ∨ x2) ∧
∧

i∈2..k−3
(¬xi ∨ xi+1 ∨ `i+1) ∧ (¬xk−2 ∨ `k−1 ∨ `k).

Assume m |= G ′:
Assume for each i ∈ 1..k , m(`i) = 0.
Due to the first clause m(x2) = 1.
Due to ith clause, if m(xi) = 1 then m(xi+1) = 1.
Due to induction, m(xk−2) = 1.
Due to the last clause of G ′, m(xk−2) = 0. Contradiction.
Therefore, exists i ∈ 1..k m(`i) = 1. Therefore m |= G .

...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 6

3-SAT satisfiability(cont. II)

Proof(contd. from last slide).

Recall

G ′ = (`1 ∨ `2 ∨ x2) ∧
∧

i∈2..k−2
(¬xi ∨ xi+1 ∨ `i+1) ∧ (¬xk−2 ∨ `k−1 ∨ `k).

Assume m |= G :
There is a m(`i) = 1.
Let m′ , m[x2 7→ 1, .., xi−1 7→ 1, xi 7→ 0, . . . , xk−2 7→ 0].
Therefore, m′ |= G ′(why?).

G ′ contains 3(k − 2) literals.
In the worst case, the formula size will increase 3 times.

Exercise 8.2
a. Complete the above argument.
b. Show a 3-SAT cannot be converted into a 2-SAT via Tseitin’s encoding.
c. When is the worst case?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 7

Special classes of formulas

We will discuss the following subclasses whose SAT problems are polynomial

I 2-SAT

I XOR-SAT

I Horn clauses

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 8

Topic 8.2

2-SAT

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 9

2-SAT

Definition 8.2
A 2-sat formula is a CNF formula that has only binary clauses

We assume that unit clauses are replaced by clauses with repeated literals.

Example 8.2

I (¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p) ∧ (r ∨ q) is a 2-SAT formula

I (p ∨ p) ∧ (¬p ∨ ¬p) is a 2-SAT formula

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 10

Implication graph

Definition 8.3
Let F be a 2-SAT formula s.t. Vars(F) = {p1, . . . , pn}.
The implication graph (V ,E) for F is defined as follows.

I V = {p1, . . . , pn,¬p1, . . . ,¬pn}
I E = {(¯̀

1, `2), (¯̀
2, `1)|(`1 ∨ `2) ∈ F},

where p̄ = ¬p and ¬p = p.

Example 8.3

Consider (¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p) ∧ (r ∨ q).

p

q

r

¬p

¬r

¬q

Exercise 8.3
Draw implication graphs of the following

1. (p ∨ q) ∧ (¬p ∨ ¬q)

2. (p∨¬q)∧ (q∨p)∧ (¬p∨¬r)∧ (r ∨¬p)

3. (p ∨ p) ∧ (¬p ∨ ¬p)

4. (p ∨ ¬p) ∧ (p ∨ ¬p)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 11

Properties of implication graph

Consider a formula F and its implication graph (V ,E).

Theorem 8.2
If there is a path from `1 to `2 in (V ,E) then there is a path from ¯̀

2 to `1.

Exercise 8.4
a. Prove the above theorem.
b. Does the above theorem imply
if there is a path from p to ¬p in (V ,E) then there is a path from ¬p to p?

Theorem 8.3
For every strongly connected component(scc) S ⊆ V in (V ,E), there is
another scc Sc , called complementary component, that has exactly the set of
literals that are negation of the literals in S .

Proof.
Due to theorem 8.2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 12

Properties of implication graph (contd.)

Theorem 8.4
For each model m |= F , if there is a path from `1 to `2 in (V ,E) then if
m(`1) = 1 then m(`2) = 1.

Theorem 8.5
For each model m |= F and each scc S in (V ,E),
either for each ` ∈ S m(`) = 1 or for each ` ∈ S m(`) = 0.

Exercise 8.5
Prove the above theorems.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 13

Reduced implication graph

Definition 8.4
For an implication graph (V ,E), the reduced implication DAG (V R ,ER) is
defined as follows.

I V R = {S |S is a scc in (V,E)}
I ER = {(S ,S ′)|there are ` ∈ S and `′ ∈ S ′ s.t. (`, `′) ∈ E}

Example 8.4

p

q

r

¬p

¬r

¬q

Theorem 8.6
If (S ,S ′) ∈ ER then (S ′c ,Sc) ∈ ER .
Exercise 8.6 Prove the above theorem.
Commentary: (VR , ER) is a graph over scc’s of (V , E). Please notice that (VR , ER) will always be a directed acyclic graph (DAG).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 14

2-SAT satisfiablity

Theorem 8.7
A 2-SAT formula F is unsat iff there is a scc S in its implication graph
(V ,E) such that {p,¬p} ⊆ S for some p.

Proof.
Reverse direction
There must be a path that goes from p to ¬p.

p

`1 `n

¬p

`′n`′1

Therefore, if p is true then ¬p is true. Therefore, p must be false.
Similarly, if p is false then ¬p is false. Therefore, p must is true.
F is unsat. ...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 15

2-SAT satisfiablity(contd.)

Proof(contd.)

Fwd direction: Let us assume there is no such S .

We will construct a model of F as follows.

1. Initially all literals are unassigned.

2. While(some scc in V R is unassigned)

2.1 Let S ∈ V R be an unassigned scc whose all children are assigned 1.
2.2 Assign literals of S to 1. Consequently, Sc is assigned 0.

...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 16

2-SAT satisfiablity(contd.)

Proof(contd.)

We need to show that step 2.1 always finds S with all children assigned 1.

claim: at step 2.1, there is an unassigned node whose all children are assigned
Choose an unassigned node.
Descend down if there is an unassigned child.
Since the DAG is finite, the process will terminate.

claim: an unassigned node can not have a child that is assigned 0.
If S is assigned 1, all its children are already 1.
Therefore, all the parents of Sc are already assigned 0(due to theorem 8.6).
Therefore, no node with 0 assignment has an unassigned parent.

Exercise 8.7
Show that the procedure produces a satisfying model.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 17

2-SAT is polynomial

Theorem 8.8
A 2-SAT satisfiability problem can be solved in linear time.

Proof.
Due to the previous theorem, 2-SAT satisfiability problem is polynomial.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 18

Attendance quiz

In the implication graph of (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬z ∨ ¬x), which of the
following holds?

¬x is reachable from y
¬x is reachable from z
¬y is reachable from z
¬y is reachable from x
¬z is reachable from x
¬z is reachable from y
¬z is reachable from z
¬z is reachable from ¬x
¬z is reachable from ¬y
¬x is reachable from x
¬x is reachable from ¬y
¬x is reachable from ¬z
¬y is reachable from y
¬y is reachable from ¬x
¬y is reachable from ¬z

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 19

Exercise: 2-SAT solving

Exercise 8.8
Find a satisfying assignment of the following formula

1. (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬z ∨ ¬x) ∧ (x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w)

2. (p0 ∨ p2) ∧ (p0 ∨ ¬p3) ∧ (p1 ∨ ¬p3) ∧ (p1 ∨ ¬p4) ∧ (p2 ∨ ¬p4)∧
(p0 ∨ ¬p5) ∧ (p1 ∨ ¬p5) ∧ (p2 ∨ ¬p5) ∧ (p3 ∨ p6) ∧ (p4 ∨ p6) ∧ (p5 ∨ p6)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 20

Topic 8.3

XOR SAT

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 21

XOR-SAT

Definition 8.5
A formula is XOR-SAT if it is a conjunction of xors of literals.

Example 8.5

(p ⊕ r ⊕ s) ∧ (q ⊕ ¬r ⊕ s) ∧ (p ⊕ q ⊕ ¬s) ∧ (p ⊕ ¬q ⊕ ¬r)
is a XOR-SAT formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 22

Solving XOR-SAT

Since xors are negation of equality, we may eliminate variables via
substitution.

Theorem 8.9
For a variable, p, xor formula G , and XOR-SAT formula F ,
(p ⊕ G) ∧ F is sat iff F [¬G/p] is sat

Exercise 8.9
Prove the above theorem.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 23

Example : solving XOR-SAT

Example 8.6

(p ⊕ r ⊕ s) ∧ (q ⊕ ¬r ⊕ s) ∧ (p ⊕ q ⊕ ¬s) ∧ (p ⊕ ¬q ⊕ ¬r)
Eliminate p:
Due to the first xor: p ⇔ ¬r ⊕ s
After substitution: (q ⊕ ¬r ⊕ s) ∧ (¬r ⊕ s ⊕ q ⊕ ¬s) ∧ (¬r ⊕ s ⊕ ¬q ⊕ ¬r)
Simplification: (q ⊕ ¬r ⊕ s) ∧ (¬r ⊕ ¬q) ∧ (s ⊕ ¬q)
Eliminate r :
Due to the second xor: r ⇔ ¬q
After substitution: (q ⊕ ¬¬q ⊕ s) ∧ (s ⊕ ¬q)
Simplification: s ∧ (s ⊕ ¬q)
Eliminate q:
Due to the second xor: q ⇔ s
After substitution: s
Solution:
m(s) = 1 m(q) = m(s) = 1
m(r) = m(¬q) = 0 m(p) = m(¬r ⊕ s) = 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 24

Exercise: XOR-SAT

Exercise 8.10
Find a satisfying assignment of the following formula

I (p ⊕ r ⊕ s) ∧ (q ⊕ r ⊕ s) ∧ (¬p ⊕ q ⊕ ¬s) ∧ (p ⊕ ¬q ⊕ ¬r)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 25

Topic 8.4

Horn Clauses

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 26

Horn clauses

Definition 8.6
A Horn clause is a clause that has the following form

¬p1 ∨ · · · ∨ ¬pn ∨ q,

where p1, . . . , pn ∈ Vars, and q ∈ Vars ∪ {⊥}.
A Horn formula is a set of Horn clauses, which is interpreted as conjunction
of the Horn clauses.
The clauses with ⊥ literals are called goal clauses and others are called
implication clauses.

Example 8.7

The following set is a Horn formula
{p, ¬q ∨ ¬r ∨ ¬t ∨ p,
¬p ∨ q, ¬p ∨ ¬r ∨ t,
¬p ∨ ¬q ∨ t, ¬r ∨ ⊥,
¬p ∨ ¬q ∨ ¬t ∨ ⊥}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 27

Implication view of the horn clauses

We may view a Horn clause

¬p1 ∨ · · · ∨ ¬pn ∨ q

as
p1 ∧ · · · ∧ pn ⇒ q.

Example 8.8

The following is an implication view of a Horn formula
{> ⇒ p, q ∧ r ∧ t ⇒ p,

p ⇒ q, p ∧ r ⇒ t,
¬p ∧ q ⇒ t, r ⇒ ⊥,
p ∧ q ∧ t ⇒ ⊥}

Note > ⇒ p means p, which is a Horn clause without negative literals

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 28

Horn satisfiability

Algorithm 8.1: HornSAT(Hs,Gs)

Input: Hs: implication clauses, Gs : goal clauses
Output: model/unsat

1 m := λx .0;
2 while m 6|= (p1 ∧ .. ∧ pn ⇒ p) ∈ Hs do
3 m := m[p 7→ 1];
4 if m 6|= (q1 ∧ .. ∧ qk ⇒ ⊥) ∈ Gs then return unsat ;

5 return m

Exercise 8.11
Solve
{> ⇒ p, q ∧ r ∧ t ⇒ p, p ⇒ q, p ∧ r ⇒ t,
¬p ∧ q ⇒ t, r ⇒ ⊥, p ∧ q ∧ t ⇒ ⊥}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 29

Recognizing Horn clauses

Sometimes a set of clauses are not immediately recognizable as Horn clause.

We may convert a CNF into a Horn formula by flipping the negation sign for
some variables. Such CNF are called Horn clause renameable.

Definition 8.7
Let F be a CNF formula and m be a model. Let flip(F ,m) denote the
formula obtained by flipping the variables that are assigned 1 in m.

Example 8.9

flip((p ∨ ¬q ∨ ¬s), {p 7→ 1, q 7→ 0, s 7→ 1, ..}) = (¬p ∨ ¬q ∨ s)

Exercise 8.12
Calculate flip((¬p ∨ q ∨ ¬s), {p 7→ 1, q 7→ 1, s 7→ 0, ..})

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 30

Renaming Horn clauses

Theorem 8.10
A CNF formula F = {C1, . . . ,Cn}, where Ci = {`i1, . . . , `i |Ci |} is Horn clause
renameable iff the following 2-SAT formula is satisfiable.∗

G = {`ij ∨ `ik |i ∈ 1..n and 1 ≤ j < k ≤ |Ci |}

Proof.
Forward direction: there is a model m such that flip(F ,m) is a Horn formula
claim: m |= G
consider a clause `ij ∨ `ik ∈ G
case `ij = p, `ik = q: one of them must flip,i.e.,m(p) = 1 or m(q) = 1

case `ij = ¬p, `ik = ¬q: at least one must not flip, i.e., not m(p) = m(q) = 1

case `ij = ¬p, `ik = q: if p flips then q must,i.e., if m(p) = 1 then m(q) = 1

In all the three cases m |= `ij ∨ `ik .

∗H. Lewis. Renaming a Set of Clauses as a Horn Set. J. of the ACM, 25:134-135, 1978.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 31

Renaming Horn clauses(contd.)

Proof(contd.)

Reverse direction: Let m |= G . Let F ′ = flip(F ,m).
claim: F ′ is a Horn formula

Suppose F ′ is not a Horn formula.
Then, there are positive literals `′ij and `′ik in clause Ci in F ′.
Therefore, m 6|= `ij ∨ `ik (why?). Contradiction.

Exercise 8.13
What is the complexity of checking if a formula is Horn clause renameable?

Exercise 8.14
Can you improve the above complexity?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 32

Topic 8.5

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 33

Unsat XOR-sat

Exercise 8.15
Give an unsat XOR-sat formula that has only xors with more than three
arguments.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 34

Unsat 2-CNF**

Exercise 8.16
Let us suppose we have n variables in a 2-CNF problem. What is the
maximum number of clauses in the formula such that the formula is
satisfiable?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 35

Unsatisfiable core of 2-CNF

Exercise 8.17
An unsatisfiable core of an unsatisfiable CNF formula is a (preferably
minimal) subset of the formula that is also unsatisfiable. Give an algorithm
to compute a minimal unsatisfiable core of 2-CNF formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 36

Horn SAT Truth to false

Exercise 8.18
In the Horn solving algorithm, we started with all false assignment and
incrementally turned the variables true.
a. Give an modified algorithm that starts with all true initial assignment and
finds satisfying assignment for the Horn clauses.
b. Can we also start with any initial assignment? If yes, how the algorithm
needs to be modified?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 37

Topic 8.6

Extra slides: Single look ahead unit resolution

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 38

Single lookahead unit resolution(SLUR)

This subclass is defined using the following algorithm.

Algorithm 8.2: SLUR(F)

Input: F : CNF formula
Output: model/unknown

1 m = λx .null;
2 while m is partial do
3 Choose an unassigned variable p in m ;
4 Apply unit clause propagation and extend m[p 7→ 1] to m′;
5 if m′ 6|= F then
6 Apply unit clause propagation and extend m[p 7→ 0] to m′;
7 if m′ 6|= F then return unknown ;

8 m := m′;

9 return m

Definition 8.8
F belongs to SLUR class if SLUR(F) can never return unknown.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 39

SLUR recognition

There is no efficient way to recognize a SLUR formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 40

More low complexity classes

I Extended horn

I CC balanced

I q-Horn

I 2-SAT linear

I Horn linear

I Linear autarky

I add others

Commentary: Recognition of q-Horn formulas in linear time. Endre Boros, Hammer, and Sun

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 41

k-BRLR class

Exercise 8.19
A CNF formula is in k-BRLR if all consequence derived from it using
resolution have at most k literals. What is the complexity of checking
satisfiability of formulas in k-BRLR?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 42

Another class

Definition 8.9
Define cc-balanced formula
Algorithms for the Satisfiability (SAT) Problem - Gu et. al. p67-74

Exercise 8.20
Consider a CNF formula F such that every clause in F has at least two literals
and for each variable p there is a model of F with p is true and a model with
p is false. Give a linear time algorithm to find a satisfying assignment of F .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 43

End of Lecture 8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	k-sat
	2-SAT
	XOR SAT
	Horn Clauses
	Problems
	Extra slides: Single look ahead unit resolution

