CS228 Logic for Computer Science 2020

Lecture 10: Completeness

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-02-05

Topic 10.1

Completeness

Now let us ask the daunting question!!!!!

Is resolution proof system complete?

In other words,

if Σ is unsatisfiable, are we guaranteed to derive $\Sigma\vdash \bot$ via resolution?

We need a notion of not able to derive something.

Clauses derivable with proofs of depth n

We define the set $Res^n(\Sigma)$ of clauses that are derivable via resolution proof of depth *n* from the set of clauses Σ .

Definition 10.1 Let Σ be a set of clauses.

$$Res^{0}(\Sigma) \triangleq \Sigma$$
$$Res^{n+1}(\Sigma) \triangleq Res^{n}(\Sigma) \cup \{C | C \text{ is a resolvent of clauses } C_{1}, C_{2} \in Res^{n}(\Sigma)\}$$

Example 10.1

Let
$$\Sigma = \{(p \lor q), (\neg p \lor q), (\neg q \lor r), \neg r\}.$$

 $Res^{0}(\Sigma) = \Sigma$
 $Res^{1}(\Sigma) = \Sigma \cup \{q, p \lor r, \neg p \lor r, \neg q\}$
 $Res^{2}(\Sigma) = Res^{1}(\Sigma) \cup \{r, q \lor r, p, \neg p, \bot\}$

All derivable clauses

Since there are only finitely many variables in Σ , we can only derive finitely many clauses. $Res^{n}(\Sigma)$ must saturate at some time point.

Definition 10.2 Let Σ be a set of clauses. There must be some m such that

$$\operatorname{Res}^{m+1}(\Sigma) = \operatorname{Res}^m(\Sigma).$$

Let $Res^*(\Sigma) \triangleq Res^m(\Sigma)$.

Completeness

Theorem 10.1

If a finite set of clauses Σ is unsatisfiable, $\bot \in \text{Res}^*(\Sigma)$.

Proof.

We prove the theorem using induction over number of variables in Σ . Wlog, We assume that there are no tautology clauses in $\Sigma_{.(why?)}$

base case:

 p_1 is the only variable in Σ . Assume Σ is unsat. Therefore, $\{p, \neg p\} \in \Sigma$.

We have the following derivation of \perp .

$$\frac{\Sigma \vdash p \qquad \Sigma \vdash \neg p}{\downarrow}$$

Proof(contd.)

induction step:

Assume: theorem holds for all the formulas containing variables $p_1, ..., p_n$. Consider an unsatisfiable set Σ of clauses containing variables $p_1, ..., p_n, p$. Let

- $\Sigma_0 \triangleq$ the set of clauses from Σ that have *p*.
- $\Sigma_1 \triangleq$ be the set of clauses from Σ that have $\neg p$.

▶ Σ_{*} \triangleq be the set of clauses from Σ that have neither *p* nor ¬*p*. Furthermore, let $\Sigma = \Sigma_0 \land \Sigma_1 \land \Sigma_*$

$$\blacktriangleright \Sigma_0' \triangleq \{C - \{p\} | C \in \Sigma_0\}$$

$$\Sigma_0 = \{C = \{p\} | C \in \Sigma_0\}$$
$$\Sigma_1' \triangleq \{C = \{\neg p\} | C \in \Sigma_1\}$$

Now consider formula

Exercise 10.1

p is not in the formula

Show $\Sigma'_0 \models \Sigma_0$ and $\Sigma'_1 \models \Sigma_1$ © (S) CS228 Logic for Computer Science 2020

Example: projections

Example 10.2 Consider $\Sigma = \{p_1 \lor p, p_2, \neg p_1 \lor \neg p_2 \lor p, \neg p_2 \lor \neg p\}$

$$\begin{split} \boldsymbol{\Sigma}_0 &= \{\boldsymbol{p}_1 \lor \boldsymbol{p}, \neg \boldsymbol{p}_1 \lor \neg \boldsymbol{p}_2 \lor \boldsymbol{p}\} \\ \boldsymbol{\Sigma}_1 &= \{\neg \boldsymbol{p}_2 \lor \neg \boldsymbol{p}\} \\ \boldsymbol{\Sigma}_* &= \{\boldsymbol{p}_2\} \end{split}$$

$$\Sigma_0' = \{p_1, \neg p_1 \lor \neg p_2\}$$

$$\Sigma_1' = \{\neg p_2\}$$

 $(\boldsymbol{\Sigma}_0' \wedge \boldsymbol{\Sigma}_*) \vee (\boldsymbol{\Sigma}_1' \wedge \boldsymbol{\Sigma}_*) = \{\boldsymbol{p}_1, \neg \boldsymbol{p}_1 \vee \neg \boldsymbol{p}_2, \boldsymbol{p}_2\} \vee \{\neg \boldsymbol{p}_2, \boldsymbol{p}_2\}$

Proof(contd.)

claim: If $(\Sigma'_0 \land \Sigma_*) \lor (\Sigma'_1 \land \Sigma_*)$ is sat then Σ is sat

• Assume
$$m \models (\Sigma'_0 \land \Sigma_*) \lor (\Sigma'_1 \land \Sigma_*)$$

• Therefore, $m \models \Sigma_{*}(why?)$

► Case 1:
$$m \models (\Sigma'_1 \land \Sigma_*)$$
.
Since all the clauses of Σ_0 have p , $m[p \mapsto 1] \models \Sigma_{0}(why^?)$.
Since Σ'_1 has no p , $m[p \mapsto 1] \models \Sigma'_1$.
Since $\Sigma'_1 \models \Sigma_1$, $m[p \mapsto 1] \models \Sigma_1$.

► Case 2:
$$m \models (\Sigma'_0 \land \Sigma_*)$$
.
Symmetrically, $m[p \mapsto 0] \models \Sigma_0$ and $m[p \mapsto 0] \models \Sigma_1$.

• Therefore, there is a model to $\Sigma_0 \wedge \Sigma_1 \wedge \Sigma_*$.

Since Σ is unsat, $(\Sigma'_0 \wedge \Sigma_*) \vee (\Sigma'_1 \wedge \Sigma_*)$ is unsat.

Exercise 10.2

 $\begin{array}{l} Show \ \Sigma \ and \ (\Sigma'_0 \land \Sigma_*) \lor (\Sigma'_1 \land \Sigma_*) \ are \ equivsatisfiable \\ \textcircled{O} \otimes \textcircled{O} \otimes \textcircled{O} \ CS228 \ Logic for \ Computer \ Science \ 2020 \ Instructor: \ Ashutosh \ Gu \ Science \ Science$ Θ

Proof(contd.)

Now we apply the induction hypothesis. Since $(\Sigma'_0 \wedge \Sigma_*) \vee (\Sigma'_1 \wedge \Sigma_*)$ is unsat and has no *p*, therefore

 $\bot \in \textit{Res}^*(\Sigma'_0 \land \Sigma_*) \qquad \text{and} \qquad \bot \in \textit{Res}^*(\Sigma'_1 \land \Sigma_*).$

Choose a derivation of \perp from both.

Example 10.3

Recall our example $\Sigma_* = \{p_2\}, \Sigma'_0 = \{p_1, \neg p_1 \lor \neg p_2\}, \Sigma'_1 = \{\neg p_2\}.$ Proofs for our running example

The above proofs do not start from clauses that are from Σ .

Proof(contd.)

Now there are two cases.

- Case 1: \bot was derived using only clauses from Σ_* in any of the two. Therefore, $\bot \in Res^*(\Sigma_*)$. Therefore, $\bot \in Res^*(\Sigma_0 \land \Sigma_1 \land \Sigma_*)$.
- Case 2: In both the derivations Σ'_0 are Σ'_1 are involved respectively. Therefore, $p \in Res^*(\Sigma_0 \land \Sigma_*)$ and $\neg p \in Res^*(\Sigma_1 \land \Sigma_*)$. Therefore, $\bot \in Res^*(\Sigma_0 \land \Sigma_1 \land \Sigma_*)$.

Example 10.4

Recall proofs.

Completeness so far

Theorem 10.2

Let Σ be a finite set of formulas and F be a formula. The following statements are equivalent.

• $\Sigma \vdash F$ • $\emptyset \in \text{Res}^*(\Sigma')$, where Σ' is CNF of $\bigwedge \Sigma \land \neg F$ • $\Sigma \models F$

Proof.

Exercise 10.3

How last theorem is applicable here?

12

Topic 10.2

Finite to Infinite

How do we handle $\Sigma'' \models F$ if Σ'' is an infinite set?

There is an interesting argument.

We prove that if an infinite set implies some formula, then there is a finite subset also implies the formula.

A theorem on strings

Theorem 10.3

Consider an infinite set S of finite binary strings. There exists an infinite string w such that the following holds.

$$\forall n. |\{w' \in S | w_n \text{ is prefix of } w'\}| = \infty$$

where w_n is prefix of w of length n.

Proof.

We inductively construct w and we will keep shrinking S. Initially $w := \epsilon$. base case:

• Let $S_0 := \{u \in S | u \text{ starts with } 0\}$. • Let $S_1 := \{u \in S | u \text{ starts with } 1\}$. • Let $S_{\epsilon} := S \cap \{w\}$. Clearly, $S = S_{\epsilon} \cup S_0 \cup S_1$. Either S_0 or S_1 are infinite.(why?) If S_0 is infinite, w := 0 and $S := S_0$. Otherwise, w := 1 and $S := S_1$.

w is prefix of all strings in the shrunk S. 000

A theorem on strings (contd.)

Proof(contd.)

induction step:

Let us suppose we have w of length n and w is prefix of all strings in S.

Clearly, $S = S_{\epsilon} \cup S_0 \cup S_1$. Either S_0 or S_1 are infinite.(why?)

If S_0 is infinite, w := w0 and $S := S_0$. Otherwise, w := w1 and $S := S_1$. w is prefix of all strings in the again shrunk S.

Therefore, we can construct the required w.

Exercise 10.4

Is the above construction of w practical?

Compactness

Theorem 10.4

A set Σ of formulas is satisfiable iff every finite subset of Σ is satisfiable.

Proof. Forward direction is trivial.(why?)

Reverse direction:

We order formulas of Σ in some order, i. e., $\Sigma = \{F_1, F_2, \dots, \}$.

Let $\{p_1, p_2, ...\}$ be ordered list of variables from $Vars(\Sigma)$ such that

- variables in Vars(F₁) followed by
- the variables in $Vars(F_2) Vars(F_1)$, and so on.

Due to the rhs, we have assignments m_n such that $m_n \models \bigwedge_{i=1}^n F_i$.

We need to construct an assignment m such that $m \models \Sigma$. Let us do it!

Compactness (contd.) II

Proof(contd.)

We assume m_n : **Vars** $(\bigwedge_{i=1}^n F_i) \to \mathcal{B}$.

We may see m_n as finite binary strings since variables are ordered $p_1, p_2, ...$ and m_n is assigning values to some first k variables.

```
Let S = \{m_n \text{ as a string } | n > 0\}
```

Due to the previous theorem, there is an infinite binary string m such that each prefix of m is prefix of infinitely many strings in S.

Compactness (contd.) III

Proof(contd.)

claim: if we interpret *m* as an assignment(how?), then $m \models F$.

- Consider a formula $F_n \in \Sigma$.
- Let $\bigwedge_{i=1}^{n} F_i$ has k variables.
- Consider m' be the prefix of length k of m.

▶ There must be $m_j \in S$, such that m' is prefix of m_j and $j > n_{(why?)}$

• Since
$$m_j \models \bigwedge_{i=1}^j F_i$$
, $m_j \models F_n$.

- ▶ Therefore, $m' \models F_n$.
- Therefore, $m \models F_n$.

Implication is effectively enumerable.

Theorem 10.5

If Σ is a finite set of formulas, then $\Sigma \models F$ is decidable.

Proof. Due to truth tables.

Theorem 10.6

If Σ is effectively enumerable, then $\Sigma\models F$ is semi-decidable.

Proof.

Due to compactness if $\Sigma \models F$, there is a finite set $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models F$. Since Σ is effectively enumerable, let $G_1, G_2, ...$ be the enumeration of Σ . Let $S_n \triangleq \{G_1, \ldots, G_n\}$. There must be a $\Sigma_0 \subseteq S_{k(why?)}$. Therefore, $S_k \models F$. We may enumerate S_n and check $S_n \models F$, which is decidable. Therefore, eventually we will say yes if $\Sigma \models F$.

Topic 10.3

Problems

Resolution: size upper bound

Exercise 10.5

Let F an unsatisfiable CNF formula with n variables. Show that there is a resolution proof of \perp from F that is smaller than $2^{n+1} - 1$.

End of Lecture 10

