CS228 Logic for Computer Science 2020

Lecture 15: First-order logic - Semantics

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-02-22

Topic 15.1

FOL - semantics

Semantics : structures

Definition 15.1 For signature S = (F, R), a S-structure m is a

 $(D_m; \{f_m : D_m^n \to D_m | f/n \in \mathbf{F}\}, \{P_m \subseteq D_m^n | P/n \in \mathbf{R}\}),\$

where D_m is a nonempty set. Let S-Mods denotes the set of all S-structures.

Some terminology

- \triangleright D_m is called domain of m.
- f_m assigns meaning to f under structure m.
- Similarly, *P_m* assigns meaning to *P* under structure *m*.

Commentary: Structures are also known as interpretations/models.

Example: structure

Example 15.1 Consider $\mathbf{S} = (\{c/0, f/1, g/2\}, \{H/1, M/2\}).$ Let us suppose our structure m has domain $D_m = \{\bullet, \bullet, \bullet\}$. We need to assign value to each function. \blacktriangleright $C_m = \bullet$ $f_m = \{ \bullet \mapsto \bullet, \bullet \mapsto \bullet, \bullet \mapsto \bullet \}$ $\blacktriangleright g_m = \{(\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \bullet, (\bullet, \bullet)$ D_m $(\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet.$ $(\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet$ We also need to assign values to each predicate. \vdash $H_m = \{\bullet, \bullet\}$ $\blacktriangleright M_m = \{(\bullet, \bullet), (\bullet, \bullet)\}$

Exercise 15.1

a. How many structure are there for the signature with the above domain? b. Suppose $P/0 \in \mathbf{R}$, give a value to P_m .

Example: structure

- Example 15.2 Consider $S = (\{\cup/2\}, \{\in/2\}).$
- $m = (\mathbb{N}; \cup_m = max, \in_m = \{(i,j)|i < j\})$ is a **S**-structure.

Semantics: assignments

Recall, We also have variables. Who will assign to the variables?

```
Definition 15.2
An assignment is a map \nu: Vars \rightarrow D_m
```

Example 15.3

In our running example the domain is \mathbb{N} . We may have the following assignment.

$$\nu = \{x \mapsto 2, y \mapsto 3\}$$

Semantics: term value

Definition 15.3

For a structure m and assignment ν , we define m^{ν} : $T_{S} \rightarrow D_{m}$ as follows.

$$m^{
u}(x) \triangleq
u(x)$$
 $x \in$ **V**ars $m^{
u}(f(t_1, \dots, t_n)) \triangleq f_m(m^{
u}(t_1), \dots, m^{
u}(t_n))$

Definition 15.4

Let t be a closed term. $m(t) \triangleq m^{\nu}(t)$ for any ν .

Example 15.4

Consider assignment
$$\nu = \{x \mapsto 2, y \mapsto 3\}$$
 and term $\cup(x, y)$.
 $m^{\nu}(\cup(x, y)) = max(2, 3) = 3$

Example: satisfiability

Example 15.5 Consider $S = (\{s/1, +/2\}, \{\})$ and term s(x) + y

Consider structure $m = (\mathbb{N}; succ, +^{\mathbb{N}})$ *and assignment* $\nu = \{x \mapsto 3, y \mapsto 2\}$

 $m^{\nu}(s(x) + y) = m^{\nu}(s(x)) + {}^{\mathbb{N}} m^{\nu}(y) = succ(m^{\nu}(x)) + {}^{\mathbb{N}} 2 = succ(3) + {}^{\mathbb{N}} 2 = 6$

Semantics: satisfaction relation

Definition 15.5

We define the satisfaction relation \models among structures, assignments, and formulas as follows

- $m, \nu \models \top$ $m, \nu \models P(t_1, \dots, t_n)$ $m, \nu \models t_1 = t_2$
- $m, \nu \models \neg F$
- $\blacktriangleright m, \nu \models F_1 \lor F_2$
- $m, \nu \models \exists x.(F)$ $m, \nu \models \forall x.(F)$

 $\begin{array}{ll} \text{if} & (m^{\nu}(t_1),\ldots,m^{\nu}(t_n)) \in P_m \\ \text{if} & m^{\nu}(t_1) = m^{\nu}(t_n) \\ \text{if} & m,\nu \not\models F \end{array}$

if
$$m, \nu \models F_1$$
 or $m, \nu \models F_2$
skipping other boolean connectives

$$\textit{if} \quad \textit{there is } u \in D_m: m, \nu[x \mapsto u] \models F$$

if for each
$$u \in D_m : m, \nu[x \mapsto u] \models F$$

Example: satisfiability

Example 15.6 Consider $S = (\{s/1, +/2\}, \{\})$ and formula $\exists z.s(x) + y = s(z)$

Consider structure $m = (\mathbb{N}; succ, +^{\mathbb{N}})$ and assignment $\nu = \{x \mapsto 3, y \mapsto 2\}$

We have seen $m^{\nu}(s(x) + y) = 6$.

$$m^{\nu[z\mapsto 5]}(s(x)+y) = m^{\nu}(s(x)+y) = 6.$$
 //Since z does not occur in the term

 $m^{\nu[z\mapsto 5]}(s(z))=6$

Therefore, $m, \nu[z \mapsto 5] \models s(x) + y = s(z)$.

$$m,\nu\models\exists z.s(x)+y=s(z).$$

Exercise: satisfaction relation

Exercise 15.2

Consider sentence $F = \exists x. \forall y. \neg y \in x$ (what does it say to you!)

Consider $m = (\mathbb{N}; \cup_m = max, \in_m = \{(i, j) | i < j\})$ and $\nu = \{x \mapsto 2, y \mapsto 3\}$.

Does $m, \nu \models F$?

Exercise: structure

Consider $\mathbf{S} = (\{c/0, f/1\}, \{H/1, M/2\})$. Let us suppose structure *m* has $D_m = \{\bullet, \bullet, \bullet\}$ and the values of the symbols in *m* are

Exercise 15.3

Is the following sentence satisfied by the above structure?

 $\exists x.H(x) \qquad \forall x.H(x) \\ \exists x.H(f(x)) \qquad \forall H(c)$

Attendance quiz

Is following sentence satisfied by the structure on the slide?

c = f(f(c)) $\exists x.H(x) \wedge H(f(x))$ $\exists x. M(x, x)$ $\exists x. \neg M(x, x)$ $\exists x. M(x, f(x))$ $\exists x, \neg M(x, f(x))$ $\forall x.(H(x) \Rightarrow f(x) \neq c)$ $\forall x.(c = x \Rightarrow H(x))$ $\forall x.(H(x) \Rightarrow \exists y.M(x,y))$ c = f(c) $\exists x. H(f(f(x)))$ $\forall x.M(x,x)$ $\forall x. \neg M(x, x)$ $\forall x.M(x,f(x))$ $\forall x. \neg M(x, f(x))$ $\exists x.(H(x) \land f(x) = c)$ $\exists x.(c = x \land \neg H(x))$ $\exists x.(H(x) \land \forall y. \neg M(x, y))$

Why nonempty domain?

We are required to have nonempty domain in the structure. Why?

Example 15.7 Consider formula $\forall x.(H(x) \land \neg H(x)).$

Should any structure satisfy the formula?

Nooooooo..

But, if we allow $m = \{\emptyset; H_m = \emptyset\}$ then

$$m \models \forall x.(H(x) \land \neg H(x)).$$

Due to this counterintuitive behavior, the empty domain is disallowed.

14

Example: non-standard structures

Example 15.8

Consider $S = (\{0/0, s/1, +/2\}, \{\})$ and formula $\exists z.s(x) + y = s(z)$

Unexpected structure: Let $m = (\{a, b\}^*; \epsilon, append_a, concat)$.

- ▶ The domain of m is the set of all strings over alphabet {a, b}.
- append_a: appends a in the input and
- concat: joins two strings.

Let
$$\nu = \{x \mapsto ab, y \mapsto ba\}$$
.
Since $m, \nu[z \mapsto abab] \models s(x) + y = s(z)$,
 $m, \nu \models \exists z.s(x) + y = s(z)$.

Exercise 15.4

- Show $m, \nu[y \mapsto bb] \not\models \exists z.s(x) + y = s(z)$
- ► Give an assignment ν s.t. $m, \nu \models x \neq 0 \Rightarrow \exists y. x = s(y)$. Show $m \not\models \forall x. x \neq 0 \Rightarrow \exists y. x = s(y)$.

Satisfiable, true, valid, and unsatisfiable

We say

- F is *satisfiable* if there are m and ν such that $m, \nu \models F$
- Otherwise, F is called unsatisfiable
- F is true in $m (m \models F)$ if for all ν we have $m, \nu \models F$
- F is valid (\models F) if for all ν and m we have $m, \nu \models$ F

If F is a sentence, ν has no influence in the satisfaction relation.(why?)

For sentence F, we say

- F is true in m if $m \models F$
- ▶ Otherwise, *F* is *false* in *m*.

Extended satisfiability

We extend the usage of \models .

Definition 15.6 Let Σ be a (possibly infinite) set of formulas. $m, \nu \models \Sigma$ if $m, \nu \models F$ for each $F \in \Sigma$.

Definition 15.7 Let M be a (possibly infinite) set of structures. $M \models F$ if for each $m \in M$, $m \models F$.

Implication and equivalence

Definition 15.8 Let Σ be a (possibly infinite) set of formulas. $\Sigma \models F$ if for each structure m and assignment ν if $m, \nu \models \Sigma$ then $m, \nu \models F$.

 $\Sigma \models F$ is read Σ implies F. If $\{G\} \models F$ then we may write $G \models F$.

Definition 15.9 Let $F \equiv G$ if $G \models F$ and $F \models G$.

Equisatisfiable and equivalid

Definition 15.10 Formulas F and G are equisatisfiable if

F is sat iff G is sat.

Definition 15.11 Formulas F and G are equivalid if

 \models *F* iff \models *G*.

Topic 15.2

Problems

FOL to PL

Exercise 15.5

Give the restrictions on FOL such that it becomes the propositional logic. Give an example of FOL model of a non-trivial propositional formula.

Valid formulas

Exercise 15.6

Prove/Disprove the following formulas are valid.

- $\blacktriangleright \forall x.P(x) \Rightarrow P(c)$
- $\blacktriangleright \forall x.(P(x) \Rightarrow P(c))$
- $\blacktriangleright \exists x.(P(x) \Rightarrow \forall x.P(x))$
- $\blacktriangleright \exists y \forall x. R(x, y) \Rightarrow \forall x \exists y. R(x, y)$
- $\forall x \exists y. R(x, y) \Rightarrow \exists y \forall x. R(x, y)$

Distributively

Exercise 15.7

Show the validity of the following formulas.

1.
$$\neg \forall x. P(x) \Leftrightarrow \exists x. \neg P(x)$$

2.
$$(\forall x. (P(x) \land Q(x))) \Leftrightarrow \forall x. P(x) \land \forall x. Q(x)$$

3.
$$(\exists x. (P(x) \lor Q(x))) \Leftrightarrow \exists x. P(x) \lor \exists x. Q(x)$$

Show \forall does not distribute over \lor .

Show \exists does not distribute over \land .

Encode mod k

Exercise 15.8

Give an FOL sentence that encodes that there are n elements in any satisfying structure, such that $n \mod k = 0$ for a given k.

Hierarchy of formulas

Exercise 15.9

Topic 15.3

Extra slides: some properties of models

Homomorphisms of models

Definition 15.12

Consider S = (F, R). Let m and m' be S-models.

A function $h: D_m \to D_{m'}$ is a homomorphism of m into m' if the following holds.

▶ for each
$$f/n \in \mathbf{F}$$
, for each $(d_1, .., d_n) \in D_m^n$

$$h(f_m(d_1,..,d_n)) = f_{m'}(h(d_1),..,h(d_n))$$

• for each
$$P/n \in \mathbf{R}$$
, for each $(d_1,..,d_n) \in D_m^n$

$$(d_1,..,d_n)\in P_m$$
 iff $(h(d_1),..,h(d_n))\in P_{m'}$

Definition 15.13

A homomorphism h of m into m' is called isomorphism if h is one-to-one. m and m' are called isomorphic if an h exists that is also onto.

Example : homomorphism

Example 15.9 Consider $S = (\{+/2\}, \{\})$.

Consider $m = (\mathbb{N}, +^{\mathbb{N}})$ and $m = (\mathcal{B}, \oplus^{\mathcal{B}})$,

 $h(n) = n \mod 2$ is a homomorphism of m into m'.

Homomorphism theorem for terms and quantifier-free formulas without =

Theorem 15.1

Let h be a homomorphism of m into m'. Let ν be an assignment.

- 1. For each term t, $h(m^{\nu}(t)) = m'^{(\nu \circ h)}(t)$
- 2. If formula F is quantifier-free and has no symbol "="

$$m^{\nu} \models F$$
 iff $m^{\prime(\nu \circ h)} \models F$

Proof.

Simple structural induction.

Exercise 15.10

For a quantifier-free formula F that may have symbol "=", show

if
$$m^{\nu} \models F$$
 then $m'^{(\nu \circ h)} \models F$

Why the reverse direction does not work?

Homomorphism theorem with =

Theorem 15.2

Let h be a homomorphism of m into m'. Let ν be an assignment. If h is isomorphism then the reverse implication also holds for formulas with "=".

Proof.

Let us suppose $m'^{(\nu \circ h)} \models s = t$. Therefore, $m'^{(\nu \circ h)}(s) = m'^{(\nu \circ h)}(t)$. Therefore, $h(m^{\nu}(s)) = h(m^{\nu}(t))$. Due to the one-to-one condition of h, $m^{\nu}(s) = m^{\nu}(t)$. Therefore, $m^{\nu} \models s = t$.

Exercise 15.11

For a formula F (with quantifiers) without symbol "=", show

if
$$m'^{(\nu \circ h)} \models F$$
 then $m^{\nu} \models F$.

Why the reverse direction does not work?

Commentary: Note that that implication direction is switched from the previous exercise.

Homomorphism theorem with quantifiers

Theorem 15.3

Let h be a isomorphism of m into m' and ν be an assignment.

If h is also onto, the reverse direction also holds for the quantified formulas.

Proof.

Let us assume, $m^{\nu} \models \forall x.F$. Choose $d' \in D_{m'}$. Since h is onto, there is a d such that d = h(d'). Therefore, $m^{\nu[x \mapsto d']} \models F$. Therefore, $m'^{(\nu \circ h)} \models \forall x. F$.

Theorem 15.4

If m and m' are isomorphic then for all sentences F,

$$m \models F$$
 iff $m' \models F$.

Commentary: The reverse direction of the above theorem is not true.

31

End of Lecture 15

