CS228 Logic for Computer Science 2020

Lecture 16: FOL - Understanding FOL

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-02-23

Topic 16.1

Example formulas

Example: graph structures

Example 16.1

Consider $S = (\{\}, \{E/2\})$ and $m = (\{a, b\}; \{(a, a), (a, b)\})$. m may be viewed as the following graph.

$$m, \{x \to a\} \models E(x, x) \land \exists y. (E(x, y) \land \neg E(y, y))$$

Exercise 16.1

Give another structure and assignment that satisfies the above formula

Example : counting

Example 16.2

Consider $S = (\{\}, \{E/2\})$

The following sentence is false in all the structures with one element domain

 $\forall x. \neg E(x, x) \land \exists x \exists y. E(x, y)$

Exercise: counting

Exercise 16.2

Give a sentence that is true only in the structures with more than two elements

Exercise 16.3

- a. Give a sentence that is true only in infinite structures
- b. Does only finite structures satisfy the negation of the sentence in (a)?

Exercise 16.4

a. Give a sentence that is true only in structures with less than or equal to two element domains.

b. Can you answer (a) without using =?

Topic 16.2

Substitution

Substitution

Definition 16.1

A substitution σ is a map from Vars \rightarrow T_S. We will write $t\sigma$ to denote $\sigma(t)$.

Definition 16.2

We say σ has finite support if only finite variables do not map to themselves. σ with finite support is denoted by $[t_1/x_1, ..., t_n/x_n]$ or $\{x_1 \mapsto t_1, ..., x_n \mapsto t_n\}$.

Commentary: We have seen substitution in propositional logic. Now in FOL, substitution is not a simple matter. Before introducing the other aspects of FOL. Let us present substitution first.

Substitution on terms

Definition 16.3

For $t \in T_S$, let the following naturally define $t\sigma$ as extension of σ .

$$\blacktriangleright c\sigma \triangleq c$$

$$\blacktriangleright (f(t_1,\ldots,t_n))\sigma \triangleq f(t_1\sigma,\ldots,t_n\sigma)$$

Example 16.3

Consider $\sigma = [f(x, y)/x, f(y, x)/y]$

Composition

Definition 16.4

Let σ_1 and σ_2 be substitutions. The composition $\sigma_1\sigma_2$ of the substitutions is defined as follows.

For each
$$x \in$$
Vars, $x(\sigma_1 \sigma_2) \triangleq (x \sigma_1) \sigma_2$.

```
Theorem 16.1
For each t \in T_s, t(\sigma_1 \sigma_2) = (t\sigma_1)\sigma_2
```

Proof.

Proved by trivial structural induction.

Theorem 16.2 $\sigma_1(\sigma_2\sigma_3) = (\sigma_1\sigma_2)\sigma_3$

(associativity)

Proof.

Consider variable x.

$$(x\sigma_1)(\sigma_2\sigma_3) = ((x\sigma_1)\sigma_2)\sigma_3 = (x(\sigma_1\sigma_2))\sigma_3$$

CS228 Logic for Computer Science 2020

Instructor: Ashutosh Gupta

IITB, India

9

Subtituion on atoms

We further extend the substitution σ to atoms.

Definition 16.5 For $F \in A_{S}$, $F\sigma$ is defined as follows.

- $\blacktriangleright \ \top \sigma \triangleq \top$
- $\blacktriangleright \perp \sigma \triangleq \perp$
- $P(t_1, \ldots, t_n)\sigma \triangleq P(t_1\sigma, \ldots, t_n\sigma)$ $(t_1 = t_2)\sigma \triangleq t_1\sigma = t_2\sigma$

Theorem 16.3 For each $F \in A_{\mathbf{S}}$, $F(\sigma_1 \sigma_2) = (F \sigma_1) \sigma_2$

Proof. Proved by trivial structural induction.

Substitution

- Sometimes, we may need to remove variable x from the support of σ .
- Definition 16.6 Let $\sigma_x = \sigma[x \mapsto x]$.
- Example 16.4

Consider $\sigma = [f(x, y)/x, f(y, x)/y]$ $\sigma_x = [f(y, x)/y]$

Commentary: The need of the definition will be clear soon.

11

Substitution in formulas (Incorrect)

Now we extend the substitution σ to all the formulas.

Definition 16.7

For $F \in \mathbf{P}_{\mathbf{S}}$, $F\sigma$ is defined as follows.

- $\blacktriangleright \ (\neg G)\sigma \triangleq \neg (G\sigma)$
- $(G \circ H)\sigma \triangleq (G\sigma) \circ (H\sigma)$ for some binary operator \circ
- $\blacktriangleright (\forall x.G)\sigma \triangleq \forall x.(G\sigma_x)$
- $\blacktriangleright (\exists x.G)\sigma \triangleq \exists x.(G\sigma_x)$

Example 16.5

$$\blacktriangleright (P(x) \Rightarrow \forall x.Q(x))[y/x] = (P(y) \Rightarrow \forall x.Q(x))$$

$$\blacktriangleright (\exists y. x \neq y)[z/x] = (\exists y. z \neq y)$$

•
$$(\exists y. x \neq y)[y/x] = (\exists y. y \neq y)$$
 ^(c) Undesirable!!!

Some substitutions should be disallowed.

Commentary: The above näive definition of the substitution in formulas is incorrect. In the next slide, we present the correct definition.

12

Substitution in formulas(Correct)

Definition 16.8 σ is suitable wrt to formula G and variable x if for all $y \neq x$, if y occurs in G then x does not occur in $y\sigma$.

Now we correctly extend the substitution σ to all formulas.

Definition 16.9 For $F \in \mathbf{P}_{\mathbf{S}}$, $F\sigma$ is defined as follows. $\blacktriangleright (\neg G)\sigma \triangleq \neg (G\sigma)$ • $(G \circ H)\sigma \triangleq (G\sigma) \circ (H\sigma)$ for some binary operator \circ ($\forall x.G$) $\sigma \triangleq \forall x.(G\sigma_x)$, where σ is suitable wrt G and x ($\exists x.G$) $\sigma \triangleq \exists x.(G\sigma_x)$, where σ is suitable wrt G and x (It is not a true restriction. We will see later.) For short hand, we may write a formula as $F(x_1, \ldots, x_k)$, where we say that x_1, \ldots, x_k are the variables that play a special role in the formula F. Let $F(t_1, ..., t_n)$ be $F[t_1/x_1, ..., t_n/x_n]$.

Substitution composition

Theorem 16.4 if $F\sigma_1$ and $(F\sigma_1)\sigma_2$ are defined then $(F\sigma_1)\sigma_2 = F(\sigma_1\sigma_2)$ Proof.

We prove it by induction. Non-quantifier cases are simple structural induction.

Assume $F = \forall x.G$ Since $F\sigma_1$ is defined, $G\sigma_{1x}$ is defined. Since $(F\sigma_1)\sigma_2$ is defined, $(G\sigma_{1x})\sigma_{2x}$ is defined (why?). By Ind. Hyp. $(G\sigma_{1x})\sigma_{2x} = G(\sigma_{1x}\sigma_{2x})$ claim: $G(\sigma_{1x}\sigma_{2x}) = G(\sigma_{1}\sigma_{2})_{x}$ Choose $y \in FV(G)$ and $v \neq x$ $y(\sigma_{1x}\sigma_{2x})$ $=((y\sigma_{1x})\sigma_{2x})=((y\sigma_{1})\sigma_{2x})$ $=((y\sigma_1)\sigma_2)$ $x \notin FV(y\sigma_1)$ (why?) $= y(\sigma_1 \sigma_2) = y(\sigma_1 \sigma_2)_x$

 $(\forall x. G\sigma_1)\sigma_2 = (\forall x. G(\sigma_{1x}\sigma_{2x})) = (\forall x. G(\sigma_1\sigma_2)_x) = F(\sigma_1\sigma_2)$

 Θ

14

Formal rules for FOL

The old rules will continue to work

We need new rules for.....

Let us see how do we develop those!

∃-Intro Quantifiers

If some fact is true about some term, we can introduce the \exists

$$\exists -\text{INTRO} \frac{\Sigma \vdash F(t)}{\Sigma \vdash \exists y. F(y)} y \notin \mathsf{Vars}(F(z))$$

Example 16.6

1.
$$\{H(x)\} \vdash H(x)$$
Assumption2. $\{H(x)\} \vdash \exists y. H(y)$ \exists -Intro applied to 1

Example 16.7

1. $\{\exists x. c \neq x\} \vdash \exists x. c \neq x$ Assumption2. $\{\exists x. c \neq x\} \vdash \exists x. \exists x. x \neq x$ \exists -Intro applied to 1

We have the side condition to avoid invalid substitutions

More bad derivations

Example 16.8

1. $\{x = 1, y = 2\} \vdash x \neq y$	from some reasoning
2. $\{x = 1, y = 2\} \vdash \exists y. y \neq y$	\exists -Intro applied to 1 X

We have the side condition to avoid invalid substitutions

Example 16.9

1. $\Sigma \vdash F(f(x), x)$	Premise
2. $\Sigma \vdash \exists x.F(x,x)$	\exists -Intro applied to 1 ×

We have the side condition to avoid invalid substitutions

We have seen the following proof in our life.

- Consider a fresh name x to represent a number.
- \blacktriangleright We prove Fact(x)
- We conclude $\forall x.Fact(x)$.

$\forall\text{-Intro for variables}$

If something is true about a variable that is not referred elsewhere.

Then it must be true for any value in the universe.

$$\forall - \text{INTRO} \frac{\Sigma \vdash F(x)}{\Sigma \vdash \forall y. \ F(y)} y \notin \text{Vars}(F(z)), \ x \in \text{Vars}, \ \text{and} \ x \notin \text{Vars}(\Sigma)$$

Example 16.10

1. $\{H(x)\} \vdash H(x)$ Assumption2. $\{H(x)\} \vdash \forall y. H(y)$ \forall -Intro applied to 1X

Since x is referred in left hand side, the above derivation is wrong.

No reference condition

\forall -Intro (for constants)

Constants may play the similar role

$$\forall -\text{INTRO} \frac{\Sigma \vdash F(c)}{\Sigma \vdash \forall y. \ F(y)} y \notin \mathsf{Vars}(F), \ c \text{ not referred in } \Sigma, \text{ and } c/0 \in \mathsf{F}$$

Example 16.11

- 1. $\Sigma \vdash H(c)$
- 2. $\Sigma \vdash \forall y. H(y)$

Premise and $c \notin Vars(\Sigma)$ \forall -Intro applied to 1

End of Lecture 16

