CS228 Logic for Computer Science 2020

Lecture 18: Terms and unification

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-02-21

Topic 18.1

Game of terms

Terms need matching

The evidence of \exists is usually a term, which need to be identified. We need to start proving accordingly.

Here is a simple example.

Example 18.1	
Let us prove $\emptyset \vdash H(f(c)) \Rightarrow \exists x. \ H(x)$	
1. $\{H(f(c))\} \vdash H(f(c))$	Assumption
2. $\emptyset \vdash H(f(c)) \Rightarrow \exists x.H(x)$	\exists -Intro applied to 1
3. $\emptyset \vdash H(f(c)) \Rightarrow \exists x.H(x)$	\Rightarrow -Intro applied to 2

Example : finding evidence of \exists is hard

There are magic terms that can provide evidence of \exists . Here is an extreme example.

Example 18.2

Consider $\emptyset \vdash \exists x_1, x_2, x_3, x_4$. $f(x_1, x_3, x_2) = f(g(x_2), j(x_4), h(x_3, a))$ Let us construct a proof for the above as follows

- 1. $\emptyset \vdash f(g(h(j(c), a)), j(c), h(j(c), a)) = f(g(h(j(c), a)), j(c), h(j(c), a))$
- 2. $\emptyset \vdash \exists x_4.f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a)) = f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a))$
- 3. $\emptyset \vdash \exists x_3, x_4. f(g(h(x_3, a)), x_3, h(x_3, a)) = f(g(h(x_3, a)), j(x_4), h(x_3, a))$
- 4. $\emptyset \vdash \exists x_2, x_3, x_4. f(g(x_2), x_3, x_2) = f(g(x_2), j(x_4), h(x_3, a))$
- 5. $\emptyset \vdash \exists x_1, x_2, x_3, x_4. f(x_1, x_3, x_2) = f(g(x_2), j(x_4), h(x_3, a))$

We need a mechanism to auto detect substitutions such that terms with variables become equal

How to find the magic terms?

In the previous example we were needed to equate terms

 $f(x_1, x_3, x_2)$ and $f(g(x_2), j(x_4), h(x_3, a))$

by mapping variables x_1 , x_2 , x_3 , and x_4 to terms.

The process of equating terms is called **unification**.

Sometimes, the unification may not even be possible.

Topic 18.2

Unification

Unifier

Definition 18.1

For terms t and u, a substitution σ is a unifier of t and u if $t\sigma = u\sigma$. We say t and u are unifiable if there is a unifier σ of t and u.

Example 18.3

Find a unifier σ of the following terms

 $\begin{array}{ll} \bullet & x_4\sigma = f(x_1)\sigma & \sigma = \{x_1 \mapsto c, x_4 \mapsto f(c)\} \\ \bullet & x_4\sigma = f(x_1)\sigma & \sigma = \{x_1 \mapsto x_2, x_4 \mapsto f(x_2)\} \\ \bullet & g(x_1)\sigma = f(x_1)\sigma & \text{not unifiable} \\ \bullet & x_1\sigma = f(x_1)\sigma & \text{not unifiable} \end{array}$

More general substitution

Definition 18.2

Let σ_1 and σ_2 be substitutions.

 σ_1 is more general than σ_2 if there is a substitution τ such that $\sigma_2 = \sigma_1 \tau$.

Example 18.4

•
$$\sigma_1 = \{x \mapsto f(y, z)\}$$
 is more general than $\sigma_2 = \{x \mapsto f(c, g(z))\}$
because $\sigma_2 = \sigma_1\{y \mapsto c, z \mapsto g(z)\}$

• $\sigma_1 = \{x \mapsto f(y, z)\}$ is more general than $\sigma_2 = \{x \mapsto f(z, z)\}$ because $\sigma_2 = \sigma_1\{y \mapsto z\}$

Exercise 18.1

If σ_1 is more general than σ_2 and σ_2 is more general than σ_3 . Then, σ_1 is more general than σ_3 .

Most general unifier (mgu)

Definition 18.3

Let t and u be terms with variables, and σ be a unifier of t and u.

 σ is most general unifier(mgu) of u and t if it is more general than any other unifier.

Example 18.5

Consider terms f(x, g(y)) and f(g(z), u)Consider the following three unifiers

1.
$$\sigma = \{x \mapsto g(z), u \mapsto g(y), z \mapsto z, y \mapsto y\}$$

2.
$$\sigma = \{x \mapsto g(c), u \mapsto g(d), z \mapsto c, y \mapsto d\}$$

3.
$$\sigma = \{x \mapsto g(z), u \mapsto g(z), z \mapsto z, y \mapsto z\}$$

The first is more general unifier than the bottom two. The second and third are incomparable_(why?)

Is mgu unique? Does mgu always exist?

Uniqueness of mgu

Definition 18.4

A substitution σ is a renaming if σ : **Vars** \rightarrow **Vars** and σ is one-to-one

Theorem 18.1

If σ_1 and σ_2 are mgus of u and t. Then there is a renaming τ such that $\sigma_1 \tau = \sigma_2$.

Proof.

Since σ_1 is mgu, therefore there is a substitution $\hat{\sigma}_1$ such that $\sigma_2 = \sigma_1 \hat{\sigma}_1$. Since σ_2 is mgu, therefore there is a substitution $\hat{\sigma}_2$ such that $\sigma_1 = \sigma_2 \hat{\sigma}_2$. Therefore $\sigma_1 = \sigma_1 \hat{\sigma}_1 \hat{\sigma}_2$.

Wlog, for each $y \in Vars$, if $y \notin FV(x\sigma_1)$ for each $x \in Vars$, then we assume $y\hat{\sigma_1} = y$

Uniqueness of mgu (contd.)

Proof(contd.)

claim: for each $y \in \mathbf{Vars}$, $y\hat{\sigma_1} \in \mathbf{Vars}$ Consider a variable x s.t. $y \in FV(x\sigma_1)$. Three possibilities for $y\hat{\sigma_1}$. Suppose $y\hat{\sigma_1} = f(..)$: $x\sigma_1\hat{\sigma_1}$ will be longer than $x\sigma_1$. Therefore, $x\sigma_1\hat{\sigma_1}\hat{\sigma_2}$ will be longer than $x\sigma_1$. Contradiction. Suppose $y\hat{\sigma_1} = c$: $\hat{\sigma_2}$ will not be able to rename c back to y in $x\sigma_1$. Therefore $y\hat{\sigma_1} \in \mathbf{Vars}$ is variable.

claim: for each
$$y_1 \neq y_2 \in$$
Vars, $y_1\hat{\sigma_1} \neq y_2\hat{\sigma_1}$
Assume $y_1\hat{\sigma_1} = y_2\hat{\sigma_1}$.

 $\hat{\sigma_2}$ will not be able to rename the variables back to distinct variables.(why?)

11

Attendance quiz

Which of the following are true about substitutions?

 $\begin{aligned} \sigma &= \{x \mapsto y, y \mapsto x\} \text{ is renaming} \\ \sigma &= \{x \mapsto x, y \mapsto y\} \text{ is renaming} \\ \sigma &= \{x \mapsto f(y)\} \text{ unifies } g(x) \text{ and } g(f(y)) \\ x \text{ and } f(x) \text{ are not unifiable} \\ g(x) \text{ and } f(x) \text{ are not unifiable} \\ \{x \mapsto x, y \mapsto y\} \text{ is more general than } \{x \mapsto y, y \mapsto y\}. \\ \{x \mapsto x, y \mapsto y\} \text{ is more general than } \{x \mapsto f(x), y \mapsto y\}. \\ \sigma &= \{x \mapsto f(y), y \mapsto y\} \text{ is renaming} \\ \sigma &= \{x \mapsto f(y), y \mapsto y\} \text{ is renaming} \\ \sigma &= \{x \mapsto f(y) \text{ unifiable } g(x) \text{ and } g(f(x)) \\ x \text{ and } f(x) \text{ are unifiable} \\ g(x) \text{ and } f(x) \text{ are unifiable} \\ \{x \mapsto y, y \mapsto y\} \text{ is more general than } \{x \mapsto x, y \mapsto y\}. \\ \{x \mapsto f(x), y \mapsto y\} \text{ is more general than } \{x \mapsto x, y \mapsto y\}. \end{aligned}$

Disagreement pair

Definition 18.5

For terms t and u, d_1 and d_2 are disagreement pair if

- 1. d_1 and d_2 are subterms of t and u respectively,
- 2. the path to d_1 in t is same as and the path to d_2 in u, and
- 3. roots of d_1 and d_2 are different.

Example 18.6

Consider terms t = f(g(c), h(x, d)) and u = f(g(y), d)

(Node labels are pairs of function symbols and argument number)

Robinsion's algorithm for computing mgu

```
Algorithm 18.1: MGU(t, u \in T_S)
\sigma := \{\};
while t\sigma \neq u\sigma do
    choose disagreement pair d_1, d_2 in t\sigma and u\sigma;
    if both d_1 and d_2 are non-variables then return FAIL;
    if d_1 \in Vars then
                                     If MGU is sound and always terminates then
       x := d_1; s := d_2;
                                      mgus for unifiable terms always exist.
    else
    x := d_2; s := d_1;
   if x \in FV(s) then return FAIL;
   \sigma := \sigma\{x \mapsto s\} // remove x in terms of \sigma and assign s to x
```

return σ

Example: run of Robinsion's algorithm Example 18.7 Consider call $MGU(f(x_1, x_3, x_2), f(g(x_2), j(x_4), h(x_3, a)))$

Initial $\sigma = \{\}$

Disagreement pairs := { $(x_1, g(x_2)), (x_3, j(x_4)), (x_2, h(x_3, a))$ }

Choose a disagreement pair: $(x_1, g(x_2))$ After update $\sigma = \{x_1 \mapsto g(x_2)\}$ Input terms after applying $\sigma: f(g(x_2), x_3, x_2)$ and $f(g(x_2), j(x_4), h(x_3, a))$ ©©©© C5228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India

15

Example: run of Robinsion's algorithm II (contd.)

Input terms now:

Disagreement pairs the new terms:= { $(x_3, j(x_4)), (x_2, h(x_3, a))$ } Choose a disagreement pair: $(x_3, j(x_4))$ After update $\sigma = \{x_1 \mapsto g(x_2), x_3 \mapsto j(x_4)\}$ Input terms after applying σ :

$$f(g(x_2), j(x_4), x_2)$$
 and $f(g(x_2), j(x_4), h(j(x_4), a))$

Example: run of Robinsion's algorithm III(contd.) Input terms now:

Choose the only remaining disagreement pair: $(x_2, h(j(x_4), a))$. Current $\sigma = \{x_1 \mapsto g(x_2), x_3 \mapsto j(x_4)\}$ refers to x_2 . After applying new mapping $\sigma := \sigma\{x_2 \mapsto h(j(x_4), a)\} = \{x_1 \mapsto g(h(j(x_4), a)), x_3 \mapsto j(x_4)\}$ After including the new mapping $\sigma = \{x_1 \mapsto g(h(j(x_4), a)), x_3 \mapsto j(x_4), x_2 \mapsto h(j(x_4), a)\}$ Terms after applying σ :

 $f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a))$ and $f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a))$

Termination of MGU

- Theorem 18.2
- MGU always terminates.
- Proof.
- Total number of variables in $t\sigma$ and $u\sigma$ decreases in every iteration.(why?)
- Since initially there were finite variables in t and u, MGU terminates.

Soundness of ${\rm MGU}$

Theorem 18.3

MGU(t, u) returns unifier σ iff t and u are unifiable. Furthermore, σ is a mgu.

Proof.

Since MGU must terminate, if t and u are not unifiable then MGU must return FAIL.

Let us suppose t and u are unifiable and τ is a unifier of t and u. claim: $\tau = \sigma \tau$ is the loop invariant of MGU.

base case:

Initially, σ is identity. Therefore, the invariant holds initially.

induction step:

We assume $\tau = \sigma \tau$ holds at the loop head.

Soundness of MGU(contd.)

Proof(contd.)

We show that the invariant holds after the loop body and FAIL is not returned. **claim:** no FAIL at the first **if** $t\sigma$ and $u\sigma$ are unifiable because $t\sigma\tau = t\tau = u\tau = u\sigma\tau_{(why?)}$. One of d_1 and d_2 is a variable, otherwise $t\sigma$ and $u\sigma$ are not unifiable.

claim: no FAIL at the last **if** Since $t\sigma\tau = u\sigma\tau$, $x\tau = s\tau$. If x occurs in s then no unifier can make them equal(why?).

claim:
$$\sigma \{x \mapsto s\} \tau = \tau$$

 $x\sigma \{x \mapsto s\} \tau = \underbrace{s\tau = x\tau}_{Proven in the last claim}$
Let $y \neq x$ then $\underbrace{y\sigma \{x \mapsto s\} \tau = y\sigma\tau}_{(why?)}$
Therefore, $\sigma \{x \mapsto s\} \tau = \tau$.
Due to the invariant $\tau = \sigma\tau$, σ is mgu at the termination.
@0@0 C5228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India

Multiple unification

Definition 18.6

Let $t_1, ..., t_n$ be terms with variables. A substitution σ is a unifier of $t_1, ..., t_n$ if $t_1\sigma = ... = t_n\sigma$. We say $t_1, ..., t_n$ are unifiable if there is a unifier σ of them.

Exercise 18.2

Write an algorithm for computing multiple unifiers using the binary MGU.

Concurrent unification

Definition 18.7

Let $t_1, ..., t_n$ and $u_1, ..., u_n$ be terms with variables. A substitution σ is a concurrent unifier of $t_1, ..., t_n$ and $u_1, ..., u_n$ if

 $t_1\sigma = u_1\sigma, \quad .., \quad t_n\sigma = u_n\sigma.$

We say $t_1, ..., t_n$ and $u_1, ..., u_n$ are concurrently unifiable if there is a unifier σ for them.

Exercise 18.3

Write an algorithm for concurrent unifiers using the binary MGU.

Topic 18.3

Unification in proving

Unification in proving

Example 18.8 Consider again $\emptyset \vdash \exists x_1, x_2, x_3, x_4. f(x_1, x_3, x_2) = f(g(x_2), j(x_4), h(x_3, a))$

Given the above, one may ask

Are $f(x_1, x_3, x_2)$ and $f(g(x_2), j(x_4), h(x_3, a))$ unifiable?

Exercise 18.4

Run the unification algorithm on the above terms

Answer:

$$\blacktriangleright x_1 \mapsto g(h(j(x_4), a))$$

$$\blacktriangleright x_2 \mapsto h(j(x_4), a)$$

$$\blacktriangleright x_3 \mapsto j(x_4)$$

We will integrate unification to a far simpler resolution proof system.

The above instantiations are not magic anymore!

Topic 18.4

Problems

MGU

Exercise 18.5

Find mgu of the following terms

- 1. $f(g(x_1), h(x_2), x_4)$ and $f(g(k(x_2, x_3)), x_3, h(x_1))$
- 2. f(x, y, z) and f(y, z, x)
- 3. MGU(f(g(x), x), f(y, g(y)))

Exercise 18.6

Let σ_1 and σ_2 be the MGUs in the above unifications. Give unifiers σ'_1 and σ'_2 for the problems respectively such that they are not MGUs. Also give τ_1 and τ_2 such that

1.
$$\sigma'_1 = \sigma_1 \tau_1$$

2.
$$\sigma'_2 = \sigma_2 \tau_2$$

Maximum and minimal substitutions

Exercise 18.7

a. Give two maximum general substitutions *and two minimal general* substitutions.

b. Show that maximum general substitutions are equivalent under renaming.

Topic 18.5

Extra slides: algorithms for unification

Robinson is exponential

Robinson algorithm has worst case exponential run time.

Example 18.9 Consider unification of the following terms $f(x_1, g(x_1, x_1), x_2, ...)$ $f(g(y_1, y_1), y_2, g(y_2, y_2), ...)$

The mgu:

x₁ → g(y₁, y₁)
 y₂ → g(g(y₁, y₁), g(y₁, y₁))
 (size of term keeps doubling)

After discovery of a substitution $x \mapsto s$, Robinson checks if $x \in FV(s)$. Therefore, Robinson has worst case exponential time.

Martelli-Montanari algorithm

This algorithm is lazy in terms of applying occurs check

Algorithm 18.2: MM-MGU($t, u \in T_S$) $\sigma := \lambda x.x; M = \{t = u\};$ while change in M or σ do if $f(t_1,...,t_n) = f(u_1,...,u_n) \in M$ then $M := M \cup \{t_1 = u_1, ..., t_n = u_n\} - \{f(t_1, ..., t_n) = f(u_1, ..., u_n)\};$ if $f(t_1, ..., t_n) = g(u_1, ..., u_n) \in M$ then return FAIL; if $x = x \in M$ then $M := M - \{x = x\}$; if $x = t' \in M$ or $t' = x \in M$ then **if** $x \in FV(t')$ **then return** *FAIL* ; $\sigma := \sigma[x \mapsto t']; M := M\sigma$

return σ

https://pdfs.semanticscholar.org/3cc3/ 338b59855659ca77fb5392e2864239c0aa75.pdf

Escalada-Ghallab Algorithm

There is also Escalada-Ghallab Algorithm for unification.

End of Lecture 18

