CS228 Logic for Computer Science 2020

Lecture 2: Propositional logic - unique parsing

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-01-15

Topic 2.1

Extra lecture slides: unique parsing

Matching parentheses

Theorem 2.1

Every $F \in \mathbf{P}$ has matching parentheses, i.e., equal number of '(' and ')'.

Proof.

base case:

atomic formulas have no parenthesis. Therefore, matching parenthesis

induction steps:

We assume $F, G \in \mathbf{P}$ has matching parentheses. Let n_F and n_G be the number of '(' in F and G respectively. Trivially, $\neg F$ has matching parentheses. For some binary symbol \circ , the number of both '(' and ')' in $(F \circ G)$ is $n_F + n_G + 1$.

Due to the structural induction, the property holds.

Prefix of a formula

Theorem 2.2

A proper prefix of a formula is not a formula.

Proof.

We show a proper prefix of a formula is in one of the following forms.

- 1. strictly more '(' than ')',
- 2. a (possibly empty) sequence of \neg .

Clearly, both the cases are not in $\ensuremath{\textbf{P}}.$

base case:

A proper prefix of atomic formulas is empty string, which is the second case

Exercise 2.1

Give examples of the above two cases

. . .

Prefix of a formula II

Proof(contd.)

induction step:

Let $F, G \in \mathbf{P}$.

Consider proper prefix F' of $\neg F$. There are two cases.

$$\blacktriangleright$$
 $F' = \epsilon$, case 2

F' = ¬F", where F" is a proper prefix of F. Now we again have two subcases for F".

• If
$$F''$$
 is in case 1, F' belongs to case 1

• If
$$F'' = \neg .. \neg$$
, F' belongs to case 2

Prefix of a formula III

Proof(contd.)

By induction F and G have balanced parenthesis.

Consider proper prefix H of $(F \circ G)$, F' be prefix of F, and G' be prefix of G.

- ▶ If $H = (F \circ G, H \text{ belongs to case } 1 \text{ because } H \text{ has one extra '(')}$
- ▶ If $H = (F \circ G', H \text{ belongs to case } 1_{(why?)}$

Similarly the following cases are handled

▶ $H = (F \circ$ ▶ H = (F'▶ H = (F'

Exercise 2.2 Complete the (why?).

Unique parsing

Theorem 2.3 Each $F \in \mathbf{P}$ has a unique parsing tree.

Proof.

 $\nu(F) \triangleq$ number of logical connectives in *F*. We apply induction over $\nu(F)$. **base case**: $\nu(F) = 0$

F is an atomic formula, therefore has a single node parsing tree.

inductive steps:
$$\nu(F) = n$$

We assume that each F' with $\nu(F') < n$ has a unique parsing tree.

case $F = \neg G$: Since G has a unique parsing tree, F has a unique parsing tree. case $F = (G \circ H)$:

Suppose there is another formation rule such that $F = (G' \circ' H')$. Since $F = (G \circ H) = (G' \circ' H')$, $G \circ H) = G' \circ' H')$. Wlog, G is prefix of G'.

Since $G, G' \in \mathbf{P}$, G can not be proper prefix of G'. Therefore, G = G'. Therefore, $\circ = \circ'$. Therefore, H = H'. Therefore, one way to unfold F. F has a unique parsing tree.

Parsing algorithm

The previous proofs suggest a parsing algorithm to generate parsing tree.

Algorithm 2.1: PARSER

Input: F : a string over **Vars** and logical connectives **Output:** parse tree if $F \in \mathbf{P}$, exception FAIL otherwise if F = p or $F = \top$ or $F = \bot$ then return $(\{F\}, \emptyset)$; if $F = \neg G$ then (V, E) := PARSER(G);return $(V \cup \{F\}, E \cup \{(F, G)\});$ if F has matching parentheses and F = (F') then

G := smallest prefix of F' where non-zero parentheses match or atomic formula

after a sequence of '¬'s;

$$o'H := tail(F', len(G));$$

if the above two match succeed then
 $(V_1, E_1) := PARSER(G);$
 $(V_2, E_2) := PARSER(H);$
return $(V_1 \cup V_2 \cup \{F\}, E_1 \cup E_2 \cup \{(F, G), (F, H)\});$

Throw FAIL

Parse Algorithm

Exercise 2.3

Show the run of Algorithm 2.1 on the following formulas.

1.
$$\neg q \Rightarrow (p \oplus r \Leftrightarrow s)$$

2. $(\neg (p \Rightarrow q) \land (r \Rightarrow (p \Rightarrow q)))$

End of Lecture 2

