CS228 Logic for Computer Science 2020

Lecture 2: Propositional logic - unique parsing

Instructor: Ashutosh Gupta
IITB, India

Compile date: 2020-01-15

OO CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

Topic 2.1

Extra lecture slides: unique parsing

OO CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Matching parentheses

Theorem 2.1
Every F € P has matching parentheses, i.e., equal number of ‘(" and ’)".

Proof.
base case:
atomic formulas have no parenthesis. Therefore, matching parenthesis

induction steps:

We assume F, G € P has matching parentheses.

Let nr and ng be the number of ‘(" in F and G respectively.

Trivially, =F has matching parentheses.

For some binary symbol o, the number of both ‘(" and ‘)" in (F o G) is
ng+ng+1.

Due to the structural induction, the property holds.

@O0 CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Prefix of a formula

Theorem 2.2
A proper prefix of a formula is not a formula.

Proof.

We show a proper prefix of a formula is in one of the following forms.

1. strictly more ‘(" than ')’,
2. a (possibly empty) sequence of —.

Clearly, both the cases are not in P.

base case:
A proper prefix of atomic formulas is empty string, which is the second case

Exercise 2.1
Give examples of the above two cases

@O0 CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Prefix of a formula 1l

Proof(contd.)

induction step:
Let F,G € P.

Consider proper prefix F' of =F. There are two cases.
> F'=¢, case 2
» F' = —F", where F" is a proper prefix of F. Now we again have two
subcases for F”.

> If F” is in case 1, F’ belongs to case 1
> If F”/ = —..~, F/ belongs to case 2

@O0 CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Prefix of a formula Ill

Proof(contd.)

By induction F and G have balanced parenthesis.

Consider proper prefix H of (F o G), F’ be prefix of F, and G’ be prefix of G.
» If H=(F o G, H belongs to case 1 because H has one extra ‘('

» If H=(F o G’, H belongs to case lwh?

Similarly the following cases are handled

» H=(Fo > H=(F
> H=(F > H=(
Exercise 2.2

Complete the (why?).

@O0 CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta

IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Unique parsing

Theorem 2.3
Each F € P has a unique parsing tree.

Proof.

v(F) £ number of logical connectives in F. We apply induction over v(F).
base case: v(F) =0

F is an atomic formula, therefore has a single node parsing tree.

inductive steps: v(F) =n

We assume that each F’ with v(F’) < n has a unique parsing tree.

case F = —G: Since G has a unique parsing tree, F has a unique parsing tree.
case F = (G o H):

Suppose there is another formation rule such that F = (G’ o' H').

Since F=(GoH)=(G' o H"), GoH)=G' o H).

Wilog, G is prefix of G'.

Since G, G’ € P, G can not be proper prefix of G’. Therefore, G = G’.
Therefore, o = o’. Therefore, H = H'. Therefore, one way to unfold F.

F has a unique parsing tree. ]

@O0 CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Parsing algorithm
The previous proofs suggest a parsing algorithm to generate parsing tree.

Algorithm 2.1: PARSER

Input: F : a string over Vars and logical connectives
Output: parse tree if F € P, exception FAIL otherwise
if F=porF=T or F=1 then return ({F},0) ;
if F =—-G then

(V, E) := PARSER(G);

return (VU {F}, EU{(F,G)});

if F has matching parentheses and F = (F’) then
G := smallest prefix of F’ where non-zero parentheses match or atomic
formula
after a sequence of '='s;

o'H := tail(F', len(G));
if the above two match succeed then

(Vi, E1) := PARSER(G);

(Va, E2) := PARSER(H);

return (V1 uW,u {F}, EEUE U {(F, G), (F, H)}),

Throw FAIL

@O0 CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Parse Algorithm

Exercise 2.3
Show the run of Algorithm 2.1 on the following formulas.

I. g=(pPres)
2. (=(p=q)A(r=(p=4q))

OO CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

End of Lecture 2

@O0

CS228 Logic for Computer Science 2020

Instructor: Ashutosh Gupta

IITB, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Extra lecture slides: unique parsing

