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Topic 2.1
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Matching parentheses

Theorem 2.1
Every F ∈ P has matching parentheses, i.e., equal number of ‘(’ and ‘)’.

Proof.
base case:
atomic formulas have no parenthesis. Therefore, matching parenthesis

induction steps:
We assume F ,G ∈ P has matching parentheses.
Let nF and nG be the number of ‘(’ in F and G respectively.
Trivially, ¬F has matching parentheses.
For some binary symbol ◦, the number of both ‘(’ and ‘)’ in (F ◦ G ) is
nF + nG + 1.

Due to the structural induction, the property holds.
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Prefix of a formula

Theorem 2.2
A proper prefix of a formula is not a formula.

Proof.
We show a proper prefix of a formula is in one of the following forms.

1. strictly more ‘(’ than ‘)’,

2. a (possibly empty) sequence of ¬.

Clearly, both the cases are not in P.

base case:
A proper prefix of atomic formulas is empty string, which is the second case
...

Exercise 2.1
Give examples of the above two cases
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Prefix of a formula II

Proof(contd.)

induction step:
Let F ,G ∈ P.

Consider proper prefix F ′ of ¬F . There are two cases.

I F ′ = ε, case 2
I F ′ = ¬F ′′, where F ′′ is a proper prefix of F . Now we again have two

subcases for F ′′.
I If F ′′ is in case 1, F ′ belongs to case 1
I If F ′′ = ¬..¬, F ′ belongs to case 2

...
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Prefix of a formula III

Proof(contd.)

By induction F and G have balanced parenthesis.

Consider proper prefix H of (F ◦G ), F ′ be prefix of F , and G ′ be prefix of G .

I If H = (F ◦ G , H belongs to case 1 because H has one extra ‘(’

I If H = (F ◦ G ′, H belongs to case 1(why?)

Similarly the following cases are handled

I H = (F◦
I H = (F

I H = (F ′

I H = (

Exercise 2.2
Complete the (why?).
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Unique parsing

Theorem 2.3
Each F ∈ P has a unique parsing tree.

Proof.
ν(F ) , number of logical connectives in F . We apply induction over ν(F ).
base case: ν(F ) = 0
F is an atomic formula, therefore has a single node parsing tree.
inductive steps: ν(F ) = n
We assume that each F ′ with ν(F ′) < n has a unique parsing tree.
case F = ¬G : Since G has a unique parsing tree, F has a unique parsing tree.
case F = (G ◦ H):
Suppose there is another formation rule such that F = (G ′ ◦′ H ′).
Since F = (G ◦ H) = (G ′ ◦′ H ′), G ◦ H) = G ′ ◦′ H ′).
Wlog, G is prefix of G ′.
Since G ,G ′ ∈ P, G can not be proper prefix of G ′. Therefore, G = G ′.
Therefore, ◦ = ◦′. Therefore, H = H ′. Therefore, one way to unfold F .
F has a unique parsing tree.
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Parsing algorithm
The previous proofs suggest a parsing algorithm to generate parsing tree.

Algorithm 2.1: Parser
Input: F : a string over Vars and logical connectives
Output: parse tree if F ∈ P, exception Fail otherwise

1 if F = p or F = > or F = ⊥ then return ({F}, ∅) ;
2 if F = ¬G then
3 (V ,E ) := Parser(G );
4 return (V ∪ {F},E ∪ {(F ,G )});

5 if F has matching parentheses and F = (F ′) then
6 G := smallest prefix of F ′ where non-zero parentheses match or atomic

formula
7 after a sequence of ‘¬’s;
8 o′H := tail(F ′, len(G ));
9 if the above two match succeed then
10 (V1,E1) := Parser(G );
11 (V2,E2) := Parser(H);
12 return (V1 ∪ V2 ∪ {F},E1 ∪ E2 ∪ {(F ,G ), (F ,H)});

13 Throw Fail
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Parse Algorithm

Exercise 2.3
Show the run of Algorithm 2.1 on the following formulas.

1. ¬q ⇒ (p ⊕ r ⇔ s)

2. (¬(p ⇒ q) ∧ (r ⇒ (p ⇒ q)))
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End of Lecture 2
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