CS228 Logic for Computer Science 2022

Lecture 10: SAT Solvers

Instructor: Ashutosh Gupta

or: Asnutosn Gupta

IITB, India

Compile date: 2022-01-23

Propositional satisfiability problem

Consider a propositional logic formula F.

Find a model m such that

$$m \models F$$
.

Example 10.1

Give a model of $p_1 \wedge (\neg p_2 \vee p_3)$

Some terminology

- Propositional variables are also referred as atoms
- ► A literal is either an atom or its negation
- A clause is a disjunction of literals.

Since \vee is associative, commutative, and absorbs multiple occurrences, a clause may be referred as a set of literals

Example 10.2

- ▶ p is an atom but ¬p is not.
- ▶ ¬p and p both are literals.
- $ightharpoonup p \lor p \lor q$ is a clause.
- \triangleright {p, \neg p, q} is the same clause.

Conjunctive normal form(CNF)

Definition 10.1

A formula is in CNF if it is a conjunction of clauses.

Since \wedge is associative, commutative, and absorbs multiple occurrences, a CNF formula may be referred as a set of clauses

Example 10.3

- ▶ ¬p and p both are in CNF.
- \blacktriangleright $(p \lor \neg q) \land (r \lor \neg q) \land \neg r \text{ in } CNF.$
- \blacktriangleright { $(p \lor \neg q), (r \lor \neg q), \neg r$ } is the same CNF formula.
- \blacktriangleright {{ $p, \neg q$ }, { $r, \neg q$ }, { $\neg r$ }} is the same CNF formula.

Exercise 10.1

Write a formal grammar for CNF

CNF input

We assume that the input formula to a SAT solver is always in CNF.

Tseitin encoding can convert each formula into a CNF without any blowup.

introduces fresh variables

Topic 10.1

DPLL (Davis-Putnam-Loveland-Logemann) method

Notation: partial model

Definition 10.2

We will call elements of Vars $\hookrightarrow \mathcal{B}$ as partial models.

Notation: state of a literal

Under partial model m,

a literal ℓ is true if $m(\ell) = 1$ and ℓ is false if $m(\ell) = 0$.

Otherwise, ℓ is unassigned.

Exercise 10.2

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

What are the states of the following literals under m?

- ▶ p₁
- ▶ p₂

- **▶** *p*₃
- $\neg p_1$

Notation: state of a clause

Under partial model m,

a clause C is true if there is $\ell \in C$ such that ℓ is true and C is false if for each $\ell \in C$, ℓ is false.

Otherwise, C is unassigned.

Exercise 10.3

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

What are the states of the following clauses under m?

- $ightharpoonup p_1 \lor p_2 \lor p_3$
- $\triangleright p_1 \vee \neg p_2$

- $\triangleright p_1 \vee p_3$
- ▶ ∅ (empty clause)

Notation: state of a formula

Under partial model m,

CNF F is true if for each $C \in F$, C is true and F is false if there is $C \in F$ such that C is false.

Otherwise, F is unassigned.

Exercise 10.4

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

What are the states of the following formulas under m?

$$\triangleright (p_3 \vee \neg p_1) \wedge (p_1 \vee \neg p_2)$$

$$(p_1 \lor p_2 \lor p_3) \land \neg p_1$$

$$\triangleright p_1 \vee p_3$$

Notation: unit clause and unit literal

Definition 10.3

C is a unit clause under m if a literal $\ell \in C$ is unassigned and the rest are false. ℓ is called unit literal.

Exercise 10.5

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

Are the following clauses unit under m? If yes, please identify the unit literals.

- $ightharpoonup p_1 \lor \neg p_3 \lor \neg p_2$
- $ightharpoonup p_1 \lor \neg p_3 \lor p_2$

- $ightharpoonup p_1 \lor \neg p_3 \lor p_4$
- $ightharpoonup p_1 \lor \neg p_2$

DPLL (Davis-Putnam-Loveland-Logemann) method

DPLL

- ightharpoonup maintains a partial model, initially \emptyset
- assigns unassigned variables 0 or 1 randomly one after another
- ▶ sometimes forced to choose assignments due to unit literals(why?)

DPLL

Algorithm 10.1: DPLL(F)

```
Input: CNF F Output: sat/unsat return DPLL(F, \emptyset)
```

Algorithm 10.2: DPLL(F,m)

```
Input: CNF F, partial assignment m
                                              Output: sat/unsat
if F is true under m then return sat:
                                                   Backtracking at
if F is false under m then return unsat:
                                                   conflict
if \exists unit literal p under m then
    return DPLL(F, m[p \mapsto 1])
if \exists unit literal \neg p under m then return DPLL(F, m[p \mapsto 0]) propagation
                                                               Decision
Choose an unassigned variable p and a random bit b \in \{0, 1\}:
   DPLL(F, m[p \mapsto b]) == sat then
     return sat
else
     return DPLL(F, m[p \mapsto 1 - b])
```

Three actions of DPLL

A DPLL run consists of three types of actions

- Decision
- Unit propagation
- Backtracking

Exercise 10.6

What is the worst case complexity of DPLL?

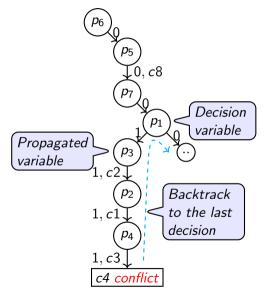
Example: decide, propagate, and backtrack in DPLL

Example 10.4

$$c_{1} = (\neg p_{1} \lor p_{2})$$
 $c_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$
 $c_{3} = (\neg p_{2} \lor p_{4})$
 $c_{4} = (\neg p_{3} \lor \neg p_{4})$
 $c_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$
 $c_{6} = (p_{2} \lor p_{3})$
 $c_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$
 $c_{8} = (p_{6} \lor \neg p_{5})$

Blue: causing unit propagation Green/Blue: true clause

Exercise 10.7 Complete the DPLL run



Optimizations

DPLL allows many optimizations.

We will discuss many optimizations.

- clause learning
- 2-watched literals

First, let us look at a revolutionary optimization.

Topic 10.2

Clause learning

Clause learning

As we decide and propagate,

we may construct a data structure to

observe the run and avoid unnecessary backtracking.

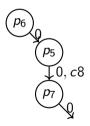
Run of DPLL

Definition 10.4

We call the current partial model a run of DPLL.

Example 10.5

Borrowing from the earlier example, the following is a run that has not reached to the conflict yet.

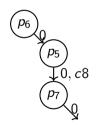


Decision level

Definition 10.5

During a run, the decision level of a true literal is the number of decisions after which the literal was made true.

Example 10.6



Given the run, we write $\neg p_5@1$ to indicate that $\neg p_5$ was set to true after one decision.

Similarly, we write $\neg p_7$ @2 and $\neg p_6$ @1.

Implication graph

During the DPLL run, we maintain the following data structure.

Definition 10.6

Under a partial model m, the implication graph is a labeled DAG (N, E), where

- N is the set of true literals under m and a conflict node
- ▶ $E = \{(\ell_1, \ell_2) | \neg \ell_1 \in causeClause(\ell_2) \text{ and } \ell_2 \neq \neg \ell_1\}$

 $causeClause(\ell) \triangleq \begin{cases} clause \ due \ to \ which \ unit \ propagation \ made \ \ell \end{cases}$ true \emptyset for the literals of the decision variables

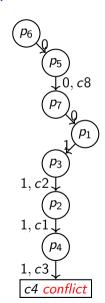
Commentary: DAG = directed acyclic graph, conflict node denotes contradiction in the run, causeClause definition works with the conflict node.(why?)

We also annotate each node with decision level.

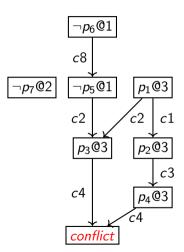
Example: implication graph

Example 10.7

$$c_1 = (\neg p_1 \lor p_2)$$
 $c_2 = (\neg p_1 \lor p_3 \lor p_5)$
 $c_3 = (\neg p_2 \lor p_4)$
 $c_4 = (\neg p_3 \lor \neg p_4)$
 $c_5 = (p_1 \lor p_5 \lor \neg p_2)$
 $c_6 = (p_2 \lor p_3)$
 $c_7 = (p_2 \lor \neg p_3 \lor p_7)$
 $c_8 = (p_6 \lor \neg p_5)$



Implication graph

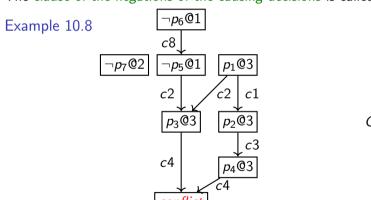


Conflict clause

We traverse the implication graph backwards to find the set of decisions that caused the conflict.

Definition 10.7

The clause of the negations of the causing decisions is called conflict clause.



Conflict clause : $p_6 \lor \neg p_1$

Commentary: In the above example, p_6 is set to 0 by the first decision. Therefore, literal p_6 is added in the conflict clause. Since the second decision does not contribute to the conflict, nothing is added in the conflict clause for the decision. Since p_1 is set to 1 by the third decision, literal $\neg p_1$ is added in the conflict clause. Not an immediately obvious idea. You may need to star at the definition for sometime.

Clause learning

Clause learning heuristics

- add conflict clause in the input clauses and
- backtrack to the second last conflicting decision, and proceed like DPLL

Theorem 10.1

Adding conflict clause

- 1. does not change the set of satisfying assignments
- 2. implies that the conflicting partial assignment will never be tried again

Multiple clauses can satisfy the above two conditions.

Definition 10.8 (Functional definition of conflict clause)

We will say if a clause satisfies the above two conditions, it is a conflict clause.

Benefit of adding conflict clauses

- 1. Prunes away search space
- 2. Records past work of the SAT solver
- Enables very many other heuristics without much complications. Covered in CS433.

Example 10.9

In the previous example, we made decisions: $m(p_6) = 0$, $m(p_7) = 0$, and $m(p_1) = 1$

We learned a conflict clause : $p_6 \lor \neg p_1 =$ There are other clever choices for conflict clauses.

Adding this clause to the input clauses results in

- 1. $m(p_6) = 0$, $m(p_7) = 1$, and $m(p_1) = 1$ will never be tried
- 2. $m(p_6) = 0$ and $m(p_1) = 1$ will never occur simultaneously.

Topic 10.3

CDCL(conflict driven clause learning)

DPLL to CDCL

Impact of clause learning was profound.

Some call the optimized algorithm CDCL(conflict driven clause learning) instead of DPLL.

CDCL as an algorithm

Algorithm 10.3: CDCL

```
Input: CNF F
```

 $m := \emptyset$; dl := 0; $dstack := \lambda x.0$; dl stands for m := UNITPROPAGATION(m, F); decision level do

backtracking

```
while F is false under m do
```

```
if dl = 0 then return unsat:
(C, dl) := ANALYZECONFLICT(m, F);
m.resize(dstack(dl)): F := F \cup \{C\}:
m := UNITPROPAGATION(m, F);
```

Boolean decision if F is unassigned under m then $\int dstack$ records history

of backtracking dstack(dl) := m.size(): dl := dl + 1; m := DECIDE(m, F);

```
m := UNITPROPAGATION(m, F);
```

while *F* is unassigned or false under *m*;

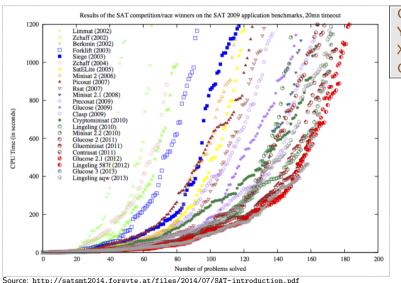
return sat

► UNITPROPAGATION(m, F) - applies unit propagation and extends m

► ANALYZECONFLICT(m, F) - returns a conflict clause learned using implication graph and a decision level upto which the solver needs to backtrack

DECIDE(m, F) - chooses an unassigned variable in mand assigns a Boolean value

Efficiency of SAT solvers over the years



Cactus plot:

Y-axis: time out

X-axis: Number of problems solved

Color: a competing solver

Exercise 10.8

- a. What is the negative impact of SAT competition?
- b. What are look-ahead based SAT solvers?

Impact of SAT technology

Impact is enormous.

Probably, the greatest achievement of the first decade of this century in science after sequencing of human genome

A few are listed here

- Hardware verification and design assistance
 Almost all hardware/EDA companies have their own SAT solver
- ▶ Planning: many resource allocation problems are convertible to SAT
- ► Security: analysis of crypto algorithms
- Solving hard problems, e. g., travelling salesman problem

Topic 10.4

Problems

Exercise: run CDCL

Exercise 10.9

Give a run of CDCL to completion on the CNF formula in example 10.4

Exercise: CDCL termination

Exercise 10.10

Prove that CDCL always terminates.

DPLL to Resolution*

Example 10.10

Let us suppose we run DPLL on an unsatisfiable formula. Give a linear time algorithm in terms of the number of steps in the run to generate resolution proof of unsatisfiability from the run of DPLL.

Lovasz local lemma vs. SAT solvers

Here, we assume a k-CNF formula has clauses with exactly k literals.

Theorem 10.2 (Lovasz local lemma)

If each variable in a k-CNF formula ϕ occurs less than $2^{k-2}/k$ times, ϕ is sat.

Definition 10.9

A Lovasz formula is a k-CNF formula that has all variables occurring $\frac{2^{k-2}}{k}-1$ times, and for each variable p, p and $\neg p$ occur nearly equal number of times.

Commentary: There are many sat solvers available online. Look into the following webpage of sat competition to find a usable and downloadable tool. http:

Exercise 10.11

- ▶ Write a program that generates uniformly random Lovasz formula
- Generate 10 instances for k = 3, 4, 5, ...
- Solve the instances using some sat solver

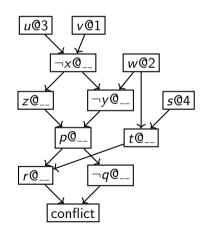
//www.satcompetition.org. Please discuss with the instructor if there is any confusion.

► Report a plot k vs. average run times

Conflict clauses

Exercise 10.12

Consider the following implication graph generated in a CDCL solver.



- a. Assign decision level to every node (write within the node)
- b. What is the conflict clause due to the implication graph?

End of Lecture 10

