Automated Reasoning 2020

Lecture 9: Theory of equality and uninterpreted functions (QF_EUF)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2020-09-19

Topic 9.1

Theory of equality and function symbols (EUF)

Reminder: Theory of equality and function symbols (EUF)

EUF syntax: first-order formulas with signature $\mathbf{S}=(\mathbf{F}, \emptyset)$, i.e., countably many function symbols and no predicates.

The theory axioms include

1. $\forall x \cdot x=x$
2. $\forall x, y \cdot x=y \Rightarrow y=x$
3. $\forall x, y, z . x=y \wedge y=z \Rightarrow x=z$
4. for each $f / n \in \mathbf{F}, \forall x_{1}, . ., x_{n}, y_{1}, . ., y_{n} . x_{1}=y_{1} \wedge . . \wedge x_{n}=y_{n} \Rightarrow f\left(x_{1}, . ., x_{n}\right)=f\left(y_{1}, . ., y_{n}\right)$

Note: Predicates can be easily added if desired

Proofs in quantifier-free fragment of $\mathcal{T}_{\text {EUF }}($ QF_EUF)

The axioms translates to the proof rules of $\mathcal{T}_{\text {EUF }}$ as follows

$$
\frac{x=y}{y=x} \text { Symmetry } \quad \frac{x=y \quad y=z}{x=z} \text { Transitivity } \quad \frac{x_{1}=y_{1} \quad . . \quad x_{n}=y_{n}}{f\left(x_{1}, . ., x_{n}\right)=f\left(y_{1}, . ., y_{n}\right)} \text { Congruence }
$$

Example 9.1

Consider: $y=x \wedge y=z \wedge f(x, u) \neq f(z, u)$

$$
\frac{\frac{y=x}{\frac{y=y}{x=y} \quad y=z} \overline{x=z}}{\frac{f(x, u)=f(z, u)}{} \quad f(x, u) \neq f(z, u)}
$$

Exercise: equality with uninterpreted functions

Exercise 9.1

If unsat, give proof of unsatisfiability

- $f(f(c)) \neq c \wedge f(c)=c$
- $f(f(c))=c \wedge f(c) \neq c$
- $f(f(c))=c \wedge f(f(f(c))) \neq c$
- $f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$

Topic 9.2

QF_EUF solving via SAT solver

Eager solving

Explicate all the theory reasoning as Boolean clauses.
Use SAT solver alone to check satisfiability.
Only possible for the theories, where we can bound the relevant instantiations of the theory axioms.

The eager solving for QF_EUF is called Ackermann's Reduction.

Notation: term encoder

Let en be a function that maps terms to new constants.

We can apply en on a formula to obtain a formula over the fresh constants.

Example 9.2

Consider en $=\left\{f(x) \mapsto t_{1}, f(y) \mapsto t_{2}, x \mapsto t_{3}, y \mapsto t_{4}\right\}$.

$$
e n(x=y \Rightarrow f(x)=f(y))=\left(t_{3}=t_{4} \Rightarrow t_{1}=t_{2}\right)
$$

Notation: Boolean encoder

For a formula F, let boolean encoder e be a partial map from $\operatorname{atoms}(F)$ to fresh boolean variables.

Definition 9.1

For a formula F, let $e(F)$ denote the term obtained by replacing each atom a by $e(a)$ if $e(a)$ is defined.

$$
\begin{aligned}
& \text { Example } 9.3 \\
& \text { Consider } e=\left\{t_{3}=t_{4} \mapsto p_{1}, t_{1}=t_{2} \mapsto p_{2}\right\} \\
& e\left(t_{3}=t_{4} \Rightarrow t_{1}=t_{2}\right)=\left(p_{1} \Rightarrow p_{2}\right)
\end{aligned}
$$

Ackermann's Reduction

The insight: the rules needed to be applied only finitely many possible ways.

Algorithm 9.1: QF_EUF_Sat(F)

```
Input: F formula QF_EUF
Output: SAT/UNSAT
Let Ts be subterms of F, en be Ts }->\mathrm{ fresh constants, e be a Boolean encoder;
G:=en(F);
foreach f(\mp@subsup{x}{1}{},..,\mp@subsup{x}{n}{}),f(\mp@subsup{y}{1}{},..,\mp@subsup{y}{n}{})\inTs do
```



```
foreach }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}\inTs\mathrm{ do
L :=G^en(t1= t2}\\mp@subsup{t}{2}{}=\mp@subsup{t}{3}{}=>\mp@subsup{t}{1}{}=\mp@subsup{t}{3}{}
foreach }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}\inTs\mathrm{ do
LG:=G^en(t1= t2 \Leftrightarrow t2 = tr )
G
return CDCL(G')
```


Exercise 9.2

Can we avoid clauses for the symmetry rule?

Example: Ackermann's Reduction

Example 9.4

Consider formula $F=f(f(x)) \neq x \wedge f(x)=x$ $T s:=\{f(f(x)), f(x), x\}$.

$$
e n:=\left\{f(f(x)) \mapsto f_{1}, f(x) \mapsto f_{2}, x \mapsto f_{3}\right\}
$$

$G:=e n(F):=f_{1} \neq f_{3} \wedge f_{2}=f_{3}$

Adding congruence consequences:
$G:=G \wedge\left(f_{2}=f_{3} \Rightarrow f_{1}=f_{2}\right)$.

$$
G^{\prime}:=G^{\prime} \wedge\left(p_{2} \Rightarrow p_{3}\right) .
$$

Adding transitivity consequences:

$$
\begin{aligned}
G:= & G \\
& \wedge\left(f_{1}=f_{2} \wedge f_{2}=f_{3} \Rightarrow f_{1}=f_{3}\right) \\
& \wedge\left(f_{1}=f_{3} \wedge f_{2}=f_{3} \Rightarrow f_{1}=f_{2}\right) \\
& \wedge\left(f_{1}=f_{2} \wedge f_{1}=f_{3} \Rightarrow f_{2}=f_{3}\right) .
\end{aligned}
$$

Assumed that symmetric atoms mapped to same variable.

Boolean encoding:

$$
G^{\prime}:=\neg p_{1} \wedge p_{2}
$$

$$
\left\{f_{1}=f_{3} \mapsto p_{1}, f_{2}=f_{3} \mapsto p_{2}, f_{1}=f_{3} \mapsto p_{3}\right\}
$$

$$
\begin{aligned}
G^{\prime}:= & G^{\prime} \\
& \wedge\left(p_{3} \wedge p_{2} \Rightarrow p_{1}\right) \wedge\left(p_{3} \wedge p_{2} \Rightarrow p_{1}\right) \\
& \wedge\left(p_{1} \wedge p_{3} \Rightarrow p_{2}\right) .
\end{aligned}
$$

Since G^{\prime} is UNSAT, F is UNSAT.

Other eager encoding

Byrant's Encoding is another method of encoding EUF formulas into a SAT problem.

Exercise 9.3

How Byrant's Encoding encoding work?

Topic 9.3

Lazy QF_EUF solver

Eager is too eager

- Eager solver wastefully instantiates too many clauses
- Eager solvers do not scale

Exercise 9.4

What is the size blow up in the Ackermann's reduction?

Lazy incremental solver

Lazy: axioms are applied on demand

Incremental: one literal is consider at a time.

Solver applies axioms only related to the literals.
Lazy solver handles only conjunction of literals. For full QF_EUF, we will integrate lazy solver with CDCL.

```
Algorithm 9.2: LazyEUF(Conjunction of EUF literals F)
globals: bool conflictFound :=0 // modified inside IncrEUF
foreach }\mp@subsup{t}{1}{}\bowtie\mp@subsup{t}{2}{}\inF\mathrm{ do
    IncrEUF(t, }\mp@subsup{t}{1}{}\bowtie\mp@subsup{t}{2}{})\mathrm{ ;
    if conflictFound then
        return unsat;
return sat;
```


IncrEUF

General idea: maintain equivalence classes among terms

```
Algorithm 9.3: IncrEUF( }\mp@subsup{t}{1}{}\bowtie\mp@subsup{t}{2}{}
globals:set of terms Ts:= \emptyset,set of pairs of classes DisEq := \emptyset, bool conflictFound := 0
Ts:= Ts \cup subTerms(t t ) \cup subTerms( }\mp@subsup{t}{2}{})
C}\mp@subsup{C}{1}{}:=\operatorname{getClass}(\mp@subsup{t}{1}{});\mp@subsup{C}{2}{}:=\operatorname{getClass}(\mp@subsup{t}{2}{});// if ti is seen first time, create new clas
if }\bowtie= "=" the
    if C1 = C2 then return;
    if (C1,C2)\inDisEq then { conflictFound := 1; return; };
    C := mergeClasses(C, C2); parent(C):= (C1, C2, t1 = t2);
    DisEq := DisEq[C1\mapstoC,C2\mapstoC]
else
    DisEq := DisEq\cup (C1, C2); // \ = " ""
    if C1 = C2 then conflictFound := 1; return ;
foreach f(ri,\ldots,\mp@subsup{r}{n}{}),f(\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{n}{})\inTs\wedge\foralli\in1..n. \existsC. ri, si\inC do
    IncrEUF(f(r
```


Exercise 9.5

Can we drop the condition $f\left(r_{1}, \ldots, r_{n}\right), f\left(s_{1}, \ldots, s_{n}\right) \in T s$?

Example: push

Example 9.5

Consider input $f(f(x)) \neq x \wedge f(x)=x$

- IncrEUF $(f(f(x)) \neq x)$
- term set $T s=\{x, f(x), f(f(x))\}$
- classes $C_{1}=\{f(f(x))\}$, and $C_{2}=\{x\}$
- $\operatorname{DisEq}=\left\{\left(C_{1}, C_{2}\right)\right\}$
- $\operatorname{IncrEUF}(f(x)=x)$
- classes $C_{1}=\{f(f(x))\}, C_{2}=\{x\}$, and $C_{3}=\{f(x)\}$
- $C_{4}=$ mergeClasses $\left(C_{2}, C_{3}\right)$: classes $C_{1}=\{f(f(x))\}, C_{4}=\{f(x), x\}$
- $\operatorname{DisEq}=\left\{\left(C_{1}, C_{4}\right)\right\}$
- Apply congruence on function f and terms of C_{4}
- Triggers recursive call $\operatorname{IncrEUF}(f(f(x))=f(x))$
- $\operatorname{IncrEUF}(f(f(x))=f(x))$
- Since $\left(C_{1}, C_{4}\right) \in$ DisEq, conflictFound $=1$ and exit

Topic 9.4

Completeness of IncrEUF

Completeness is not obvious

Example 9.6

Consider: $x=y \wedge y=z \wedge f(x, u) \neq f(z, u)$

$$
\frac{x=y}{\frac{f(x, u)=f(y, u)}{f(x, u)=f(z, u)} \quad \frac{y=z}{f(y, u)=f(z, u)}} \quad f(x, u) \neq f(z, u)
$$

In the proof $f(y, u)$ occurs, which does not occur in the input formula.

Completeness of IncrEUF

Theorem 9.1

Let $\Sigma=\left\{\ell_{1}, . ., \ell_{n}\right\}$ be a set of literals in $\mathcal{T}_{\text {EUF }}$.
$\operatorname{IncrEUF}\left(\ell_{1}\right) ; \ldots ; \operatorname{IncrEUF}\left(\ell_{n}\right)$; finds conflict iff Σ is unsat.
Proof.
Since IncrEUF uses only sound proof steps of the theory, it cannot find conflict if Σ is sat.

Assume Σ is unsat and there is a proof for it.
Since IncrEUF applies congruence only if the resulting terms appear in Σ, we show that there is a proof that contains only such terms.

Completeness of IncrEUF (contd.)

Proof(contd.)

Since Σ is unsat, there is $\Sigma^{\prime} \cup\{s \neq t\} \subseteq \Sigma$ s.t. $\Sigma^{\prime} \cup\{s \neq t\}$ is unsat and Σ^{\prime} contains only positive literals.(why)

Consider a proof that derives $s=t$ from Σ^{\prime}.

Therefore, we must have a proof step such that

$$
\frac{u_{1}=u_{2} \quad . . \quad u_{n-1}=u_{n}}{s=t},\left\{\begin{array}{l}
\text { Flattened transitivity } \\
\text { and symmetry rules!! }
\end{array}\right.
$$

where $n \geq 2$, the premises have proofs from $\Sigma^{\prime}, u_{1}=s$, and $u_{n}=t$.

Exercise 9.6

Show that the last claim holds.
Commentary: We can generalize transitivity with more than two premises. $\frac{u_{1}=u_{2} \quad u_{2}=u_{3} \quad \cdots \quad u_{n-1}=u_{n}}{u_{1}=u_{n}}$
We may assume that symmetry is not used if we assume $s=t$ is same as $t=s$. We interpret them in either direction as needed.

Completeness of IncrEUF (contd.)

Proof(contd.)

Wlog, we assume $u_{i}=u_{i+1}$ either occurs in Σ^{\prime} or derived from congruence.
Observation: if $u_{i}=u_{i+1}$ is derived from congruence then the top symbols are same in u_{i} and u_{i+1}.

Now we show that we can transform the proof via induction over height of congruence proof steps.

Exercise 9.7
Justify the "wlog" claim.

Completeness of IncrEUF (contd.)

Proof(contd.)
claim: If s and t occurs in Σ^{\prime}, any proof of $s=t$ can be turned into a proof that contains only the terms from Σ^{\prime}

base case:

If no congruence is used to derive $s=t$ then no fresh term was invented.(why?)

induction step:

We need not worry about $u_{i}=u_{i+1}$ that are coming from Σ^{\prime}.
Only in the subchains of the equalities due to congruences may have new terms.

Example 9.7

$$
\begin{array}{cc}
\frac{x=y}{f(x, u)=f(y, u)} & \frac{y=z}{f(y, u)=f(z, u)} \\
f(x, u)=f(z, u)
\end{array}
$$

Completeness of IncrEUF (contd.)

Proof(contd.)

Let $f\left(u_{11}, . ., u_{1 k}\right)=f\left(u_{21}, . ., u_{2 k}\right) \quad . . \quad f\left(u_{(j-1) 1}, . ., u_{(j-1) k}\right)=f\left(u_{j 1}, . ., u_{j k}\right)$ be such a maximal subchain in the last proof step for $s=t$.

$$
\underline{s=\ldots \quad \frac{u_{11}=u_{21} \quad . \quad u_{1 k}=u_{2 k}}{f\left(u_{11}, . ., u_{1 k}\right)=f\left(u_{21}, . ., u_{2 k}\right)}} \quad \cdots \quad \frac{u_{(j-1) 1}=u_{j 1}}{} \quad . . \quad u_{(j-1) k}=u_{j k}{ }^{f\left(u_{(j-1) 1}, . ., u_{(j-1) k}\right)=f\left(u_{j 1}, . . u_{j k}\right)} \quad \ldots=t,
$$

We know $f\left(u_{11}, . ., u_{1 k}\right)$ and $f\left(u_{j 1}, . ., u_{j k}\right)$ occur in $\Sigma^{\prime} .($ why? $)$
For $1<i<j, f\left(u_{i 1}, . ., u_{i k}\right)$ may not occur in Σ^{\prime}.

Exercise 9.8

Justify the (why?). (Hint: Maximal subchain requirement ensures that either $f\left(u_{11}, . ., u_{1 k}\right)$ is sor equality before is not derived by congruence.)

Completeness of IncrEUF (contd.)

Proof(contd.)

We can rewrite the proof in the following form.

$$
\frac{s=\ldots}{\frac{\frac{u_{11}=u_{21}}{} \quad . . \quad u_{(j-1) 1}=u_{j 1}}{u_{11}=u_{j 1}} \quad . . \quad \frac{u_{1 k}=u_{2 k} \quad . . \quad u_{(j-1) k}=u_{j k}}{u_{1 k}=u_{j k}}} \underset{f\left(u_{11}, . ., u_{1 k}\right)=f\left(u_{j 1}, . ., u_{j k}\right)}{s=t}
$$

Due to induction hypothesis, for each $i \in 1 . . k$,
since $u_{1 i}$ and $u_{j i}$ occur in $\Sigma^{\prime}, u_{1 i}=u_{j i}$ has a proof with the restriction.
Example 9.8

$$
\frac{x=y}{\frac{f(x, u)=f(y, u)}{f(x, u)=f(z, u)}} \frac{y=z}{f(y, u)=f(z, u)} \rightsquigarrow \frac{x=y \quad y=z}{x=z}
$$

Topic 9.5

Model generation

Model generation

After union-find with congruence closure, if we have no contradiction then we construct a satisfying model.

- Each equivalence class is mapped to a value from the universe of model.
- We may assign a value to multiple classes while respecting disequality constraints
- The problem of finding optimum model reduces into graph coloring problem.(how?)
- The models of functions are read from the class value map and their term parent relation.

Example: model generation

Exercise 9.9

Consider formula $f(f(a))=a \wedge f(a) \neq a$.
We have terms $T s=\left\{f^{2}(a), f(a), a\right\}$.
Due to the constraint, we have classes $C_{1}=\left\{f^{2}(a), a\right\}$ and $C_{2}=\{f(a)\}$.
Since C_{1} and C_{2} can not be merged, we assign values v_{1} and v_{2} respectively.
Therefore, we construct model m as follows

- $D_{m}=\left\{v_{1}, v_{2}\right\}$
- $a=v_{1}$
- $f=\left\{v_{1} \mapsto v_{2}, v_{2} \mapsto v_{1}\right\}$ because $f\left(C_{1}\right)$ is going to C_{2} and vice versa.

Topic 9.6

Problems

Hybrid approach

Exercise 9.10

We have seen both lazy and eager approach. How can we have a mixed lasy/eager approach for EUF solving?

WrongIncrEUF

Exercise 9.11

Show that the following implementation is incomplete

```
Algorithm 9.4: WrongIncrEUF \(\left(t_{1} \bowtie t_{2}\right)\)
globals:set of terms \(T s:=\emptyset\), set of pairs of classes DisEq \(:=\emptyset\), bool conflictFound \(:=0\)
\(T s:=T s \cup \operatorname{subTerms}\left(t_{1}\right) \cup \operatorname{subTerms}\left(t_{2}\right)\);
\(C_{1}:=\operatorname{get} C l a s s\left(t_{1}\right) ; C_{2}:=\operatorname{get} \operatorname{Class}\left(t_{2}\right) ; / /\) if \(t_{i}\) is seen first time, create new class
if \(\bowtie="=\) " then
    if \(C_{1}=C_{2}\) then return;
    if \(\left(C_{1}, C_{2}\right) \in\) DisEq then \(\{\) conflictFound \(:=1\); return; \};
    \(C:=\) mergeClasses \(\left(C_{1}, C_{2}\right) ; \operatorname{parent}(C):=\left(C_{1}, C_{2}, t_{1}=t_{2}\right)\);
    DisEq := DisEq[ \(\left.C_{1} \mapsto C, C_{2} \mapsto C\right]\);
    foreach \(f\left(r_{1}, \ldots, r_{n}\right), f\left(s_{1}, \ldots, s_{n}\right) \in T s \wedge \forall i \in 1 . . n . \exists C . r_{i}, s_{i} \in C\) do
        WrongIncrEUF \(\left(f\left(r_{1}, \ldots, r_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right)\);
else
    DisEq \(:=\operatorname{DisEq} \cup\left(C_{1}, C_{2}\right) ; / / \bowtie=" \neq "\)
    if \(C_{1}=C_{2}\) then conflictFound \(:=1\); return ;
```


Equality reasoning

Exercise 9.12

Characterize tuple (n, m, i, j) such that the following formula is unsat.

$$
f^{n}(x)=f^{m}(x) \wedge f^{i}(x) \neq f^{j}(x)
$$

Exercise: translation validation

Exercise 9.13

Show that the following two circuits are equivalent.

Ls are latches, circles are Boolean circuts, and Ms are multiplexers.
Source: http://www.decision-procedures.org/slides/uf.pdf

End of Lecture 9

