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CDCL(T )

CDCL solves(i.e. checks satisfiability) quantifier-free propositional formulas

CDCL(T ) solves quantifier-free formulas in theory T ,

I separates the boolean and theory reasoning,

I proceeds like CDCL, and

I needs support of a T -solver DPT , i.e., a decision procedure for conjunction of literals of T

The tools that are build using CDCL(T ) are called
satisfiablity modulo theory solvers (SMT solvers)
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CDCL(T ) - some notation

Let T be a first-order-logic theory with signature S.

We assume input formulas are from T , quantifier-free, and in CNF.

Definition 10.1
For a quantifier-free T formula F , let atoms(F ) denote the set of atoms appearing in F .

Example 10.1

I f (x) = g(h(x , y)) is a formula in QF EUF.

I x > 0 ∨ y + x = 3.5z is a formula in QF LRA.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Boolean encoder
For a formula F , let boolean encoder e be a partial map from atoms(F ) to fresh boolean
variables.

Definition 10.2
For a formula F , let e(F ) denote the term obtained by replacing each atom a by e(a) if e(a) is
defined.

Example 10.2

Let F = x < 2 ∨ (y > 0 ∨ x ≥ 2) and e = {x < 2 7→ x1, y > 0 7→ x2}.
e(F ) = x1 ∨ (x2 ∨ ¬x1)

Exercise 10.1
Consider boolean encoder e = {x < 2 7→ x1, y > 0 7→ x2}. Encode the following.
I e(x ≥ 2) =

I e(x < 2⇒ y ≤ 0) =

I e(x + y ≤ 0) =

I e(>) =

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Partial model

Definition 10.3
For a boolean encoder e, a partial model m is an ordered partial map from range(e) to B.

Example 10.3

partial models {x 7→ 0, y 7→ 1} and {y 7→ 1, x 7→ 0} are not same.

CDCL(T ) will proceed by constructing partial models like CDCL.
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Reverse encoder

Definition 10.4
For a partial model m of e, let e−1(m) , {e−1(x)|x 7→ 1 ∈ m} ∪ {¬e−1(x)|x 7→ 0 ∈ m}

Example 10.4

Let e = {x < 2 7→ x1, y > 0 7→ x2} and m = {x1 7→ 0, x2 7→ 1}.
e−1 = {x1 7→ x < 2, x2 7→ y > 0}
e−1(m) = {¬(x < 2), y > 0}

Exercise 10.2
Consider boolean encoder e = {x < 2 7→ x1, y > 0 7→ x2}. Encode the following.
I e−1({x1 7→ 0}) =

I e−1({x1 7→ 0, x2 7→ 0}) =

I e−1({x3 7→ 0}) =

I e−1(∅) =
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Theory propagation

If we have partial assignment m, then we need to check if the theory accepts the assignment.

In other words, we need to know if
∧

e−1(m) is sat.

Example 10.5

In last example, we had e−1(m) = {¬(x < 2), y > 0}.
We ask if

∧
e−1(m) = ¬(x < 2) ∧ y > 0 is sat. If no, we need to backtrack the assignments.

We assume that function TheoryDeduction can check satisfiability of
∧

e−1(m).
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CDCL(T )

Algorithm 10.1: CDCL(T )(formula G )

1 e := CreateEncoder(G); F := e(G); m := UnitPropagation(m,F ); dl := 0; dstack := λx .0;
2 do
3 // backtracking
4 while m 6|= F do
5 if dl = 0 then return unsat;
6 (C , dl) := AnalyzeConflict(m);
7 m.resize(dstack(dl)); F := F ∪ {C}; m := UnitPropagation(m,F );

8 // Boolean decision
9 if F is unassigned under m then
10 dstack(dl) := m.size(); dl := dl + 1; m := Decide(m,F ); m := UnitPropagation(m,F ) ;

11 // Theory propagation
12 if F is unassigned or sat under m then
13 (Cs, dl ′) := TheoryDeduction(T )(

∧
e−1(m),m, dstack, dl) ; // Theory solving

14 if dl ′ < dl then {dl = dl ′; m.resize(dstack(dl)); } ;
15 F := F ∪ e(Cs); m := UnitPropagation(m,F );

16 while F is unassigned under m or m 6|= F or e−1(m) is unsat;
17 return sat

F is Boolean encoding of input G

Same as SAT
solver CDCL
Same as SAT
solver CDCL

returns a clause set
and a decision level
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Topic 10.1

TheoryDeduction
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Theory propagation

TheoryDeduction looks at the atoms assigned so far and checks

I if they are mutually unsatisfiable

I if not, are there other literals from G that are implied by the current assignment

Any implementation must comply with the following goals

I Correctness: boolean model is consistent with T
I Termination: unsat partial models are never repeated
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TheoryDeduction

TheoryDeduction solves conjunction of literals and returns a set of clauses and a decision
level.

(Cs, dl ′) := TheoryDeduction(T )(
∧

e−1(m),m, dstack, dl)

Cs may contain the clauses of the form

(
∧

L)⇒ `

where ` ∈ lits(F ′) ∪ {⊥} and L ⊆ e−1(m).

Commentary: The RHS need not be a single literal. However, in most theories the single literal is a good practical choice.
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Example : TheoryDeduction

Example 10.6

If TheoryDeduction(QF LRA)(x > 1 ∧ x < 0, ...) is called, the returned clauses will be

Cs := {(x > 1 ∧ x < 0⇒ ⊥)}.

If TheoryDeduction(QF LRA)(x > 1 ∧ y > 0, ...) is called, the returned clauses may be

Cs := {(x > 1 ∧ y > 0⇒ x + y > 0), ...}.

Assuming x + y > 0
occurs in input
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Specification of TheoryDeduction

The output of TheoryDeduction must satisfy the following conditions

I If
∧

e−1(m) is unsat in T then Cs must contain a clause with ` = ⊥. dl ′ is the decision
level immediately after which the unsatisfiablity occurred (clearly stated shortly).

I if
∧

e−1(m) is sat then dl ′ = dl .
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Example : CDCL(QF EUF)

Example 10.7

Consider F ′ = (x = y ∨ y = z) ∧ (y 6= z ∨ z = u) ∧ (z = x)
e(F ′) = (x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ x4

After F := e(F ′); m := UnitPropagation(m,F )
m = {x4 7→ 1}

After m := Decide(m,F );
m = {x4 7→ 1, x2 7→ 0}

After m := UnitPropagation(m,F )
m = {x4 7→ 1, x2 7→ 0, x1 7→ 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example : CDCL(QF EUF) II

Since m = {x4 7→ 1, x2 7→ 0, x1 7→ 1}, e−1(m) = {x = y , y 6= z , z = x}

After (Cs, dl ′) := TheoryDeduction(QF EUF)(x = y ∧ y 6= z ∧ z = x , ..)
Cs = {x 6= y ∨ y = z ∨ z 6= x}, dl ′ = 0,e(Cs) = {¬x1 ∨ x2 ∨ ¬x4}

After F := F ∪ e(Cs); m := UnitPropagation()
m = {x4 7→ 1, x2 7→ 0, x1 7→ 1} ← conflict with learned clause

Exercise 10.3
Complete the run
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Theory propagation implementation - incremental solver

Theory propagation is implemented using incremental theory solvers.

Incremental solver DPT for theory T
I takes input constraints as a sequence of literals,

I has a data structure that defines the solver state and satisfiability of constraints seen so far.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2021 Instructor: Ashutosh Gupta IITB, India 17

Theory solver DPT interface

A theory solver must provide the following interface.

I push( ` ) - adds literal ` in “constraint store”

I pop() - removes last pushed literal from the store

I checkSat() - checks satisfiability of current store

I unsatCore() - returns the set of literals that caused unsatisfiablity

Definition 10.5
An unsat core of Σ is a subset (preferably minimal) of Σ that is unsat.

Commentary: We assume that push and pop call checkSat() at the end of their execution. Therefore, explicit calls to checkSat() are not necessary. However, practical
tools allow users to choose the policy of calling checkSat() - lazy vs. eager

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Theory propagation implementation
Algorithm 10.2: TheoryDeduction
Input: Set of literals Ls

1 Read only input: m partial model, dstack decision depths, dl current decision level, input formula G
2 foreach ` ∈ Ls do
3 DPT .push(`)

4 if DPT .checkSat() == unsat then
5 // theory conflict
6 Ls ′ := DPT .unsatCore(); dl ′ := max{dl ′′|∃` ∈ Ls ′, i . m[i ] = e(`) ∧ dstack(dl ′′) < i};
7 return ({¬

∧
Ls ′}, dl ′)

8 else
9 //implied clauses

10 Cs := ∅;
11 foreach ` ∈ Lits(G) do
12 DPT .push(¬`);
13 if DPT .checkSat() == unsat then
14 Ls ′ := DPT .unsatCore(); Cs := Cs ∪ {¬

∧
Ls ′};

15 DPT .pop();

16 return (Cs,dl)

dl ′ is the latest decision after which
all literals in Ls ′ became true.

Ls ′ = Ls will also be correct.
But, inefficient.

` is called implied
literal and ¬` ∈ Ls ′
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Example: Theory deduction unsat example

Example 10.8

Consider Ls = {x = z , x = y , f (x) 6= f (y)}

First we will push all the literals to the theory solver.
DPT .push(x = z); DPT .push(x = y); DPT .push(f (x) 6= f (y)).

We will call DPT .checkSat(), which will return unsat.

We will call DPT .unsatCore(), which will return {x = y , f (x) 6= f (y)}.

The returned clause will be x 6= y ∨ f (x) = f (y).

Theory deduction will also return an appropriate decision level.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2021 Instructor: Ashutosh Gupta IITB, India 20

Example: Theory deduction sat example

Example 10.9

Consider x = y ∈ Ls and assume f (x) = f (y) ∈ Lits(G ).

After pushing Ls, let us assume DPT .checkSat() returns sat.

We search for implied clauses.

Since f (x) = f (y) ∈ Lits(G ), we will eventually call DPT .push(f (x) 6= f (y)).

We get unsatisfiablity and unsat core, {x = y , f (x) 6= f (y)}.

We return x 6= y ∨ f (x) = f (y) among the implied clauses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2021 Instructor: Ashutosh Gupta IITB, India 21

Topic 10.2

Example theory propagation implementation
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Let us study implementation of DPEUF

Decides conjunction of literals in the theory of EUF with interface

push, pop, checkSat, and unsatCore.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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push, checkSat, and pop

I DPEUF .push

Algorithm 10.3: DPEUF .push(t1 ./ t2)

1 IncrEUF (t1 ./ t2);

I DPEUF .checkSat() { return conflictFound ; }

I DPEUF .pop() is implemented by recording the time stamp of pushes and undoing all the
mergers happened after the last push.

Exercise 10.4
Write pseudo code for DPEUF .pop()

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Unsat core

Algorithm 10.4: DPEUF .unsatCore()

1 assume(conflictFound = 1);
2 Let (t1 6= t2) be the disequality that was violated;
3 return {t1 6= t2} ∪ getReason(t1, t2);

Algorithm 10.5: getReason(t1, t2)

1 Let (t′1 = t′2) be the merge operation that placed t1 and t2 in same class;
2 if t′1 = f (s1, .., sk) = f (u1, ...uk) = t′2 was derived due to congruence then
3 reason :=

⋃
i getReason(si , ui )

4 else
5 reason := {t′1 = t′2}
6 return getReason(t1, t

′
1) ∪ reason ∪ getReason(t′2, t2)

t1 t2t ′1 = t ′2

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 10.3

SMT Solvers
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Incremantal theory propagation

Earlier CDCL(T )

CDCL T -solver

model

Implied/Conflict clause

Fine-grained interaction with theory

CDCL T -solver

Literal assignment

DPT .push

Literal backtracking

DPT .pop

Non-deterministically

DPT .checkSat

Implied/Conflict clause
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Theory propagation strategies

I Exhaustive or Eager :
Cs contains all possible clauses

I Minimal or Lazy :
Cs only contains the clause that refutes current m

I Somewhat Lazy :
Cs contains only easy to deduce clauses

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Rise of SMT solvers

I In early 2000s, stable SMT solvers started appearing. e.g., Yiecs

I SMT competition(SMT-comp) became a driving force in their ever increasing efficiency

I Formal methods community quickly realized their potential

I Z3, one of the leading SMT solver, alone has about 3000+ citations
(375 per year)(June 2016)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2021 Instructor: Ashutosh Gupta IITB, India 29

Leading tools

The following are some of the leading SMT solvers

I Z3

I CVC4

I MathSAT

I Boolector
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Topic 10.4

Problems
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Run SMT solvers

Exercise 10.5
I Find a satisfying assignment of the following formula using SMT solver

(x > 0 ∨ y < 0) ∧ (x + y > 0 ∨ x − y < 0)

Give the model generated by the SMT solver.

I Prove the following formula is valid using SMT solver

(x > y ∧ y > z)⇒ x > z

Give the proof generated by the SMT solver.

Please do not simply submit the output. Please write the answers in the mathematical notation.
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Knapsack problem

Exercise 10.6
Write a program for solving the knapsack problem that requires filling a knapsack with stuff with
maximum value. For more information look at the following.

https://en.wikipedia.org/wiki/Knapsack_problem

The output of the program should be the number of solutions that have value more than 95% of
the best value.

Download Z3 from the following webpage: https: // github. com/ Z3Prover/ z3

We need a tool to feed random inputs to your tool. Write a tool that generates random
instances, similar to what was provided last time.

Evaluate the performance on reasonably sized problems. You also need to design the evaluation
strategy. Evaluation plots and a small text to describe your strategies.
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Topic 10.5

Extra slides : optimizations
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Implied literals without implied clauses

Bottleneck: There may be too many implied clauses.

Observation: Very few of the implied clauses are useful, i.e., contribute in early detection of
conflict.

Optimization: apply implied literals, without adding implied clauses.

Optimization overhead: If an implied model is used in conflict then recompute the implied
clause for the implication graph analysis.
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Relevancy

Bottleneck: All the assigned literals are sent to the theory solver.

Observation: However, CDCL only needs to send those literals to the solver that make unique
clauses satisfiable.

Optimization:

I Each clause chooses one literal that makes it sat under current model.

I Those clause that are not sat under current model do nothing.

I If a literal is not chosen by any clause then it is not passed on to T -solver.

Patented: US8140459 by Z3 guys(the original idea is more general than stated here)

Optimization overhead: Relevant literal management

Exercise 10.7
Suggest a scheme for relevant literal management.
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End of Lecture 10
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