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Reasoning over linear arithmetic

Nonnegative linear combination of inequalities derives new inequalities.

Example 13.1

Consider the following proof step

2x − y ≤ 1 4y − 2x ≤ 6

x + y ≤ 5

Is the above proof step complete?
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Basic concepts

One needs to know the following

I Linearly independent

I Rank of a set of vectors

I Vector vs. Row vector

I Hyperplane

I Affine hull

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2021 Instructor: Ashutosh Gupta IITB, India 4

Cone

Definition 13.1
A set C of vectors is a cone if x , y ∈ C then λ1x + λ2y ∈ C for each λ1, λ2 ≥ 0.

Definition 13.2
A cone C is finitely generated by vectors x1, . . . , xm is the set

cone{x1, . . . , xm} := {λ1x1 + · · ·+ λmxm|λ1, . . . , λm ≥ 0}

Example 13.2

C = {x |
[
a1

a2

]
x ≤ 0} = {λ1x1 + λ2x2|λ1, λ2 ≥ 0} x1 x2

a1 a2

Exercise 13.1
Give an example of cone that is not finitely generated.
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Topic 13.1

Fundamental theorem of linear inequality
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Fundamental theorem of linear inequality

Theorem 13.1
Let a1, . . . , am and b be n-dimensional vectors. Then, one of the following is true.

1. b := λ1ai1 + · · ·+ λkaik for λj ≥ 0 and ai1 , . . . , aik are linearly independent.

2. There is a hyperplane {x |cx = 0} containing t − 1 linearly independent vectors from
a1, . . . , am such that

ca1 ≥ 0, . . . , cam ≥ 0 and cb < 0,

where t := rank{a1, . . . , am, b}.

Observation:

I c is a row vector

I Wlog, we assume t = n.(why?)

I Both possibilities cannot be true at the same time.(why?)

I We are left to prove that both possibilities cannot be false at the same time.
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Geometrically, theorem case 1

In the first case, b is in the cone of a1, . . . , am.

a1

a2

a3

a4

b
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Geometrically theorem case 2

In the second case, b is outside of the cone of a1, . . . , am.
Furthermore, a1, . . . , am are in one side of {x |cx = 0} and b is on the other.

a1

a2

a3
a4

b

Exercise 13.2
Give a c?
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Proof: fundamental theorem of linear inequality

Proof.
Consider the following iterative algorithm to decide case 1 or 2.
Initially choose n independent vectors D := {ai1 , . . . , ain} from a1, . . . , am.

1. Let b = λi1ai1 + · · ·+ λinain .

2. If λi1 , . . . , λin ≥ 0, case 1 and exit.

3. Otherwise, choose smallest ih such that λih < 0.

4. Choose c such that ca = 0 for each a ∈ D \ {aih} and caih = 1.

5. If ca1, . . . , cam ≥ 0, case 2 and exit. (why?)

6. Otherwise, choose smallest s such that cas < 0.

7. D := D \ {aih} ∪ {as}. goto 1. ...

Exercise 13.3
a. Why does λs exist in step 1? b. Why does c exist in step 4?
c. Why does D remain linearly independent over time?
d. Why not simply enumerate all linearly independent subsets from a1, ..., am?

Clearly, cb < 0.(why?)
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Example: iterations for D

Example 13.3

Let us have a set of vectors {a1, a2, a3} in 2-dimensional vector space and also vector b. We are
looking for a subset D that contains b in its cone.

1. Initial guess, D = {a1, a2}.
2. If we write b = λ1a1 + λ2a2, then λ1 < 0.

3. Clearly b is not in the cone of D.

4. We get c such that ca2 = 0 and ca1 > 0.

5. Since cb = c(λ1a1 + λ2a2) = λ1ca1, cb < 0.

6. We find a3 such that ca3 < 0
(Intuition: a3 is likely to be closer to b)

7. Now D := D \ {a1} ∪ {a3} = {a2, a3}
8. b is in the cone of D. Terminate.

a1 a2

a3

b

a1 a2

c
b

a2a1

a3
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Proof: fundamental theorem of linear inequality II

Proof.
We are yet to prove termination of the algorithm. Let Dk be the set D at iteration k .

claim: Dk will not repeat in any future iterations. (Therefore, termination.)
Contrapositive: For some ` > k , D` = Dk .

Let r be the highest index such that ar left D at pth iteration and came back at qth iteration for
k ≤ p < q ≤ `.

Therefore, Dp ∩ {ar+1, . . . , am} = Dq ∩ {ar+1, . . . , am} ...

1 mr
• •• • • • • •• • •

Blue dots are indexes for Dp. Red dots are indexes for Dq.
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Proof: fundamental theorem of linear inequality III

Proof.

Dp := {aip1 , . . . , aipn }
Let b = λip1 ai

p
1

+ · · ·+ λipn aipn .

Since r left Dp,
if ipj < r , λipj

≥ 0 and

if ipj = r , λr < 0.

At qth iteration, we have cqb < 0.

Since r entered in Dq,
for each j < r , cqaj ≥ 0,
for j = r , cqar < 0, and
for each iqj > r , cqaiqj

= 0.

...

1 mr
• •• • • • • •• • •

λi
p
j
≥ 0 λr < 0

cqaj ≥ 0
cqar < 0 cqaiqj

= 0
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Proof: fundamental theorem of linear inequality IV

1 mr
• •• • • • • •• • •

λi
p
j
≥ 0 λr < 0

cqaj ≥ 0
cqar < 0 cqaiqj

= 0

Proof.
Consider

0 > cqb = cq(λip1 ai
p
1

+ · · ·+ λipn aipn )

Let us show for each j , λipj
(cqaipj

) is nonnegative.

Three cases

I ipj < r : λipj
≥ 0 and cqaipj

≥ 0

I ipj = r : λr < 0 and cqar < 0

I ipj > r : cqaipj
= 0(why?)

Therefore, cqb ≥ 0. Contradiction.
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Topic 13.2

Satisfiability conditions
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Satisfiability check

Using the previous theorem, we will prove two theorems for the conditions of satisfiability.

The theorem allows us to produce certificate of unsatisfiability.
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Nonnegative satisfiability check for equalities

Theorem 13.2
Let A be a matrix and b be a vector. Then, there is a vector x ≥ 0 such that Ax = b iff

for all y , yA ≥ 0⇒ yb ≥ 0.

Proof.
(⇒)
Let x0 ≥ 0 be such that Ax0 = b. Therefore, for all row vector y , yAx0 = yb.
Since x0 ≥ 0, if yA ≥ 0 then yb ≥ 0.

(⇐)
Let us suppose there is no such x .
Let a1, . . . , an be columns of A. Therefore, b 6∈ cone{a1, . . . , an}.(why?)

Due to Theorem 13.1, there is a y such that yA ≥ 0 and yb < 0.
Commentary: The theorem is also called Farkas lemma (version I)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Unsatisfiability certificate

If we find y such that yA ≥ 0 ∧ yb < 0, then x ≥ 0 ∧ Ax = b is unsatisfiable.

We may use y as certificate of unsatisfiability.
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Example : satisfiability condition and unsatisfiability certificate

Example 13.4

Consider x1 + x2 = 3.
Therefore, A = [1 1] and b = [3]
Let us apply theorem 13.2, we obtain

y [1 1] ≥ 0⇒ y [3] ≥ 0.

After simplification, y ≥ 0⇒ 3y ≥ 0.

Since the above implication is valid, the
equality is satisfiable by some x1, x2 ≥ 0.

Example 13.5

Consider x1 + x2 = −3.
Therefore, A = [1 1] and b = [−3]
Let us apply theorem 13.2, we obtain

y [1 1] ≥ 0⇒ y [−3] ≥ 0.

After simplification, y ≥ 0⇒ −3y ≥ 0.

Since the above implication does not hold for
y = 1, the equality is unsatisfiable for any
x1, x2 ≥ 0.

Exercise 13.4
Show if a1 and a2 are non-zero and of opposite sign, then a1x1 + a2x2 = b have nonnegative
solution for any b.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2021 Instructor: Ashutosh Gupta IITB, India 19

Satisfiability check for inequalities

Theorem 13.3
Let A be a matrix and b be a vector. Then, there is a vector x such that Ax ≤ b iff

for all y , y ≥ 0 ∧ yA = 0⇒ yb ≥ 0.

Proof.
Consider matrix A′ = [I A − A]. A′x ′ = b with x ′ ≥ 0 has a solution iff Ax ≤ b has.(why?)

Due to theorem 13.2, the left hand side is equivalent to

for all y , y [I A − A] ≥ 0⇒ yb ≥ 0.

Therefore, for all y , y ≥ 0 ∧ yA ≥ 0 ∧ −yA ≥ 0⇒ yb ≥ 0.
Therefore, for all y , y ≥ 0 ∧ yA = 0⇒ yb ≥ 0.

Exercise 13.5
Give the relation between solutions of A′x ′ = b ∧ x ′ ≥ 0 and Ax ≤ b.
Commentary: The theorem is also called Farkas lemma (version II)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: unsatisfiability certificate

Example 13.6

Consider unsatisfiable constraints x1 ≤ 0 ∧ x2 ≤ 0 ∧ x1 + x2 ≥ 3

In the matrix form

A =

1 0

0 1

−1 −1


 b =

0

0

−3




For y = [1 1 1] ≥ 0, we have yA = 0 and yb = −3 < 0.

y is the certificate of unsatisfiability.
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Topic 13.3

Linear programming and duality
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Linear programming problem

Definition 13.3
Linear programming (LP) is the problem of maximizing or minimizing linear functions over a
polyhedron. For example,

max{cx |Ax ≤ b}

Commentary: We will be proving completeness using the property of duality involving linear programming.
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Duality condition

Definition 13.4
The following is called LP-duality condition

max{cx |Ax ≤ b} = min{yb|y ≥ 0 ∧ yA = c}.

Example 13.7

Consider the green polyhedron with a corner.

max achieves the optima at the corner, if c is in the blue
cone.(why?)

c is nonnegative combination of rows of A, i.e., y .
c

a2x
= b2

a
1 x

=
b
1

a1 a2

We will prove the following
always holds.
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Duality theorem

Theorem 13.4
Let A be a matrix, and let b and c be vectors. Then,

max{cx |Ax ≤ b} = min{yb|y ≥ 0 ∧ yA = c}

provided both sets are nonempty.

Proof.
claim: max will be less than or equal to min

Let us suppose Ax ≤ b, y ≥ 0, and yA = c.
After multiply x in yA = c , we obtain yAx = cx .
Since y ≥ 0 and Ax ≤ b, yb ≥ cx .

We need to show that the following is nonempty.

Ax ≤ b ∧ y ≥ 0 ∧ yA = c ∧ cx ≥ yb︸ ︷︷ ︸
makes min and max equal

...
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Duality theorem (contd.)

Proof(contd.) Writing Ax ≤ b ∧ y ≥ 0 ∧ yA = c ∧ cx ≥ yb as follows.

A 0

0 −I
0 AT

0 −AT

−c bT




x

yT

  ≤
b

0

cT

−cT

0




To show the above is nonempty, we apply theorem 13.3 and show that for each u, t, v ,w , λ ≥ 0

u t v w λ

[ ] A 0

0 −I
0 AT

0 −AT

−c bT



= 0 ⇒ u t v w λ

[ ] b

0

cT

−cT

0




≥ 0

...
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Duality theorem(contd.)

Proof(contd.)

After multiplying matrices, we obtain the following implication

uA− λc = 0 ∧ λbT + (v − w)AT − t = 0⇒ ub + (v − w)cT ≥ 0.

for each u, t, v ,w , λ ≥ 0.

After simplifications, we need to show that for each u, λ ≥ 0 and v ′

uA = λc ∧ λbT + v ′AT ≥ 0⇒ ub + v ′cT ≥ 0,

where v ′ = v − w . ...

Exercise 13.6
a. Why are there no non-negativity constraints on v ′?
b. How is t removed?

Reduced the number of variables and
constraints to analyze
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Duality theorem (contd.)

Proof(contd.)

We need to show that for each u, λ ≥ 0 and v ′

uA = λc ∧ λbT + v ′AT ≥ 0⇒ ub + v ′cT ≥ 0,

We assume left hand side and case split on number λ.
case λ > 0:

Consider λbT + v ′AT ≥ 0
 bT + v ′AT/λ ≥ 0 // divided by λ
 b + Av ′T/λ ≥ 0 // take transpose
 ub + uAv ′T/λ ≥ 0(why?) // multiply by u
 ub + λcv ′T/λ ≥ 0 // use uA = λc
 ub + cv ′T ≥ 0
 ub + v ′cT ≥ 0(why?) ...
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Duality theorem (contd.)

Proof(contd.)

case λ = 0:
Left hand side reduces to uA = 0 ∧ v ′AT ≥ 0.

claim: ub ≥ 0
By assumption, Ax ≤ b is sat. Due to theorem 13.3, uA = 0⇒ ub ≥ 0.

claim: v ′cT ≥ 0
By assumption y ≥ 0 ∧ yA = c is sat. Therefore, yT ≥ 0 ∧ AT yT = cT is sat.
Due to theorem 13.2, v ′AT ≥ 0⇒ v ′cT ≥ 0.

Therefore, ub + v ′cT ≥ 0.

Commentary: λ = 0 case is a trivial case. λ = 0 indicates that cx ≥ yb in Ax ≤ b ∧ y ≥ 0 ∧ yA = c ∧ cx ≥ yb is being ignored for the search contradictory linear
combination. Then the satisfiability question reduces into two separate problems, which are satisfiable by assumption. The above calculation plays out this intuition.
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Emptiness of dual space

Definition 13.5
For an LP problem max{cx |Ax ≤ b}, the set {y |y ≥ 0 ∧ yA = c} is called dual space.

Theorem 13.5
If the dual space of LP problem max{cx |Ax ≤ b} is empty. Then, the maximum value is
unbounded.

Proof.
Let us suppose the dual space y ≥ 0 ∧ yA = c is empty.
Due to theorem 13.2, there is a z such that

Az ≥ 0 ∧ cz < 0.

We can use −z to arbitrarily increase the value of cx . Therefore, the max value is unbounded.
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Topic 13.4

Implication completeness
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Farkas lemma (Affine version)
Theorem 13.6
Let the system Ax ≤ b is nonempty and let c be a row vector and δ be a number. Let us
suppose for each x

Ax ≤ b ⇒ cx ≤ δ.

Then there exists δ′ ≤ δ such that cx ≤ δ′ is a nonnegative linear combination of the inequalities
in Ax ≤ b.

Proof.
Since the max is bounded, the dual space is nonempty and let the max be δ′.

Since both the spaces are nonempty and due to the duality theorem,

max{cx |Ax ≤ b} = min{yb|y ≥ 0 ∧ yA = c}

Therefore, there exists y0, such that y0b = δ′ ∧ y0 ≥ 0 ∧ y0A = c.(why?)

Therefore, cx ≤ δ′ is nonnegative linear combination of Ax ≤ c .(why?)
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Topic 13.5

Problems
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Replace more vectors in each iteration

Exercise 13.7
We replace one vector at a time in the fundamental theorem of linear inequalities. Can we
replace two vectors in some iterations? Give conditions when this is possible.
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Exercise: Farkas lemmas variations

Exercise 13.8
Prove that:
Let A be a matrix and b be a vector. Then, there is a vector x ≥ 0 such that Ax ≤ b iff

for all y , y ≥ 0 ∧ yA ≥ 0⇒ yb ≥ 0.

Exercise 13.9
Prove that:
Let A be a matrix and b be a vector. Then, there is a vector x such that Ax = b iff

for all y , yA = 0⇒ yb = 0.
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Strict inequalities

Exercise 13.10
Modify theorems 13.1, 13.2, and 13.3 to support strict inequalities in theorem 13.3.
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Topic 13.6

Extra slides: Cone, Polyhedra, Polytope, Polyhedron
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Polyhedra == finitely generated cone

Definition 13.6
A cone C is a polyhedral if C = {x |Ax ≤ 0} for some matrix A.

Theorem 13.7
A convex cone is polyhedral iff it is finitely generated.

Proof.
Intuitively, obvious.

We are skipping the proof here.
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Polyhedron, affine half space, polytope

Definition 13.7
A set of vectors P is called polyhedron if

P = {x |Ax ≤ b}

for some matrix A and vector b.

Definition 13.8
A set of vectors H is called affine half-space if

H = {x |wx ≤ δ}

for some nonzero row vector w and number δ.
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Polytope

Definition 13.9
A set of vectors Q is called polytope if

Q = hull({x1, .., xm}) = {λ1x1 + · · ·+ λmxm|λ1 + · · ·+ λm = 1 ∧ λ1, . . . , λm ≥ 0}

for some nonzero vectors x1, . . . , xm.

Example 13.8

The following is hull({(2, 3), (0, 0), (3, 1)})
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polyhedron = polytope + polyhedral

Theorem 13.8 (Decomposition theorem)

Let P = {x |Ax ≤ b} be a polyhedron iff P = Q + C for some polytope Q and polyhedral C .

Proof.
Let us consider the forward direction.

Let us construct the following cone in one higher dimension.

P ′ = {
[
x
λ

]
|Ax − λb ≤ 0 ∧ λ ≥ 0}

Clearly, the following holds

x ∈ P iff

[
x
1

]
∈ P ′

...Exercise 13.11
Prove the reverse direction
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polyhedron = polytope + polyhedral (contd.)

Proof(contd.)

Let the following q + c vectors generate P ′.(why exists?)[
x1

1

]
. . .

[
xq
1

]
︸ ︷︷ ︸

q

,

[
y1

0

]
. . .

[
yc
0

]
︸ ︷︷ ︸

c

Let Q = hull({x1, ...xq}) and C = cone({y1, ..., yc})

claim: P = Q + C
Let x ∈ P⇔ By definition of P ′, for some µ1, ..µq, λ1, ...λc ≥ 0 the following holds.[

x
1

]
= µ1

[
x1

1

]
+ · · ·+ µq

[
xq
1

]
+ λ1

[
y1

0

]
+ · · ·+ λc

[
yc
0

]
.

⇔ µ1x1 + ...µqxq ∈ Q, µ1 + ...+ µq = 1, and λ1y1 + · · ·+ λcyc ∈ C (why?)
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Example: P = Q + C

Example 13.9

Consider the following polyhedron P.

1. Green + red vectors are generators of P ′

2. Red vectors have no λ component, they
form the cone C

3. Green vectors have λ = 1.

4. Projecting green vectors on x1 and x2 plane
we get purple vectors.

5. Q is the hull of the purple vectors
λ = 1

x1

x2
O
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End of Lecture 13
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