
BAKERY PROTOCOL
Mutual Exclusion Protocols

Darshana Nafde

204050005

IITB CS 766

9th Feb 2021

Introduction
■ The Bakery algorithm is one of the simplest known solutions to the mutual exclusion

problem for the general case of N process

■ Devised by Leslie Lamport

■ Based on token system in bakery and banks. Preserves the first come first serve
property

■ Before the bakery algorithm, people believed that the mutual exclusion problem was
unsolvable--that you could implement mutual exclusion only by using lower-level mutual
exclusion constructs

■ A New Solution of Dijkstra's Concurrent Programming Problem Leslie Lamport
Massachusetts Computer Associates, Inc. Communications of the ACM August
1974 Volume 17 Number 8 http://lamport.azurewebsites.net/pubs/bakery.pdf

■ Proving the Correctness of Multiprocess Programs

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 2, MARCH 1977

http://www.cis.umassd.edu/~hxu/courses/cis481/references/Lamport-1977.pdf

https://en.wikipedia.org/wiki/Leslie_Lamport
http://www.cis.umassd.edu/~hxu/courses/cis481/references/Lamport-1977.pdf

Algorithm

choosing[i] = 1;

number[i]= 1 + maximum(number[1],...number[N]);

choosing[i]=0;

for(j=1:N)

{

while(choosing[j]){}

while(number[j] != 0 && (number[j],j)<(number[i],i)){}

}

CRITICAL SECTION

number[i]=0;

Demo

Correctness Proof

■ Assertion 1. If processors i and k are in the bakery and i entered the bakery before k

entered the doorway, then number [i] < number [k].

■ Proof.

– By hypothesis, number [i] had its current value while k was choosing the
current value of number [k].

– Hence, k must have chosen number [k] > =1 + number [i]

Correctness Proof

■ Assertion 2. If processor i is in its critical section, processor k is in the bakery, and k
<> i, then (number [i], i) < (number [k], k).

■ Proof:

– k is done choosing before i starts its check, number[k] will have clear a value >,
< or = number[i] and i will proceed accordingly

– If k is choosing while i needs to decide if it can go ahead of k, it should wait till
choosing is done, so that i is sure about its decision

– If k didn’t start choosing, when i is deciding if it can go ahead of k, even if k
decides to start choosing now its number[k] < number[i]. From Assertion 1

– If both k and i get the same number while choosing, then min(i, j) will proceed.

– Thus, no two process can enter CS at same time

Correctness Proof

■ Assertion 3. Assume that only a bounded number of processor failures may occur. If

no processor is in its critical section and there is a processor in the bakery which
does not fail, then some processor must eventually enter its critical section.

■ Proof.

– Assume that no processor ever enters its critical section.

– Then there will be some time after which no more processors enter or leave the
bakery.

– At this time, assume that processor i has the minimum value of (number [i], i)
among all processors in the bakery.

– Then processor i must eventually complete the for loop and enter its critical
section.

– This is the required contradiction

Two processes cannot be in [4] at the
same time Dk attached to all arcs of subroutine 8 and Ekj

to all arcs of subroutine 4

Define Ekj such that if j ≠ k then Ekj ^ Ejk ^ πk € 4^ πj € 4 = False
The invariance of the interpretation containing the indicated assertions will imply that πk and πj cannot both be in
their CS

Define k ≤≤ j : (0 < n[k] < n[j]) V (0 = n[j] < n[k]) V (n[k] = n[j] ^ k < j)
πk can enter CS if k ≤≤ j

[2] = [2.1] U {2.2} U [2.3]

Now we have defined Dk : n[k]= 0

Can Ekj = (n[k] > 0) ^ k <<j ?

No, because πj might be choosing a value which will
make j <<k but not yet set, and once its set k << j will
be false.
So good Ekj = (n[k] > 0) ^ (k << j V πj is choosing n[j]
which will make k << j)

2.3 decomposed further

Rkj = n[k] > 0 and
if πj is not changing value of n[j],
then k <<j

Skj = n[k] > 0 and
if πj is choosing value of n[j],
then it will choose value > n[k]

Ekj = Rkj ^ Skj

2.1 decomposed further, introducing cf array

• cf is initially false
• Modified only in 2.1.1 and 2.1.5

Rkj = (n[k] > 0) ^ [(πj not in [2.1.3] or [6]) => k << j]

Skj = (n[k]>0) ^ [(πj is in [2.1.3] => Tkj]

Tkj = function of πjs local variables
Tkj = true => either n[k] has not been
read by [2.1.3] of πj or its current value
was read

2.3.3 "wait until cf[i] = false" operation

Initial assertion:
^{πk is in [8] ^ n[k] = 0 ^
(cf[k]=0 :1≤k≤N)}

Tkj= ([(πk is in {2.1.3.2,
2.1.3.3}) ^(jj >k)] =>
[n[jj]]>n[k]) ^
([(πj is in {2.1.3.4,2.1.3.5})
^ (jj ≥ k)] => [tj] > n[k])^
([(πj is in {2.1.3.6}) ^ (jj ≥
k)] => [n[jj] > n[k]])

Event Graph

P1

WCP1 =1

WNP1>=val +1

WCP1=0

P2

WNP2 = val

RCP1 = 0

RNP2 << NP1

CRITICALRCP2 = 0

RNP2 = 0

CRITICAL

rf

fr

rf

Deadlock Freedom

Deadlock situation on a resource can arise if and only if all of the following conditions
hold simultaneously in a system:

■ Mutual exclusion: Processes are using ME resources

■ Hold and Wait

■ No preemption

■ Circular wait

In Bakery, concurrent reads are non interferring and concurrent writes are impossible

Thank You

