BAKERY PROTOCOL

Mutual Exclusion Protocols

Darshana Nafde
204050005

IITB CS 766
9th Feb 2021

Introduction

The Bakeryalgorithm is one of the simplest known solutions to the mutual exclusion
problem for the general case of N process

Devised by

Based on token system in bakery and banks. Preserves the first come first serve
property

Before the bakery algorithm, people believed that the mutual exclusion problem was
unsolvable-that you could implement mutual exclusion only by using lowerlevel mutual
exclusion constructs

A New Solution of Dijkstra's Concurrent Programming Problem Leslie Lamport
Massachusetts Computer Associates, Inc. Communications of the ACM August
1974 Volume 17 Number 8

Proving the Correctness of Multiprocess Programs
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 2, MARCH 1977

https://en.wikipedia.org/wiki/Leslie_Lamport
http://www.cis.umassd.edu/~hxu/courses/cis481/references/Lamport-1977.pdf

Algorithm

choosing[i] = 1;
number [i]= 1 + maximum (number[1l], ...number[N])
choosing[1]=0;
for (J=1:N)
{
while (choosing([J]) {}
while (number([j] !'= 0 && (number[j],J)<(number[i],1i)) {}
}
CRITICAL SECTION

number[1]=0;

Demo

Correctness Proof

m Assertion 1. If processorsiand k are in the bakery and i entered the bakery before k
entered the doorway, then number [i] < number [K].

m Proof.

— By hypothesis, number [i] had its current value while k was choosing the
current value of number [K].

- Hence, k must have chosen number [k] > =1 + number [i]

Correctness Proof

m Assertion 2. If processori is in its critical section, processork is in the bakery, and k
<> |, then (number]i], i) < (humber [K], k).
m Proof:

- ks done choosing before i starts its check, number[k] will have clear a value >,
< or =number[i] and i will proceed accordingly

- Ifkis choosing while i needs to decide if it can go ahead of k, it should wait till
choosing is done, so that i is sure about its decision

- Ifk didn’t start choosing, when i is deciding if it can go ahead of k, even if k
decides to start choosing now its number[k] < number[i]. From Assertion 1

— If both k and i get the same number while choosing, then min(i, j) will proceed.
- Thus, no two process can enter CS at same time

Correctness Proof

Assertion 3. Assume that only a bounded number of processor failures may occur. If

No processoris in its critical section and there is a processor in the bakery which
does not fail, then some processor must eventually enter its critical section.

Proof.

Assume that no processor ever enters its critical section.

Then there will be some time after which no more processors enter or leave the
bakery.

At this time, assume that processor i has the minimum value of (number [i], i)
among all processors in the bakery.

Then processor i must eventually complete the for loop and enter its critical
section.

This is the required contradiction

!
- = - — = =
I 1
| PROLOGUE |
|
AlE :1=1, o0 N} —=—-[3
F = = = = 74
. | CRITICAL I
Two processes cannot bein [4] at the , SECTION i
sametime i Dk attached to all arcs of subroutine 8 and Ekj
toall arcs of subroutine 4
AlE 1=l oo Nl ===efs ==== D,
:- ***** 16
| EPILOGUE |
_ _ _ - _)
D, ===={7
: REST OF |
PROCESS
(I I — 1

Fig. 4. Stage 1 decomposition of 1.

Define Ekj such that if j # k then Ekj A Ejk A ik € 4" Tj € 4 =False
The invariance of the interpretation containing the indicated assertions will imply that mk and mj cannot both be in
+hair CC

Define k =<j: (o < n[k] < n[j])V (o =n[j] < n[k])V (n[k] = n[j] A k <_])
tk can enter CS if k << j

choosa nlk)l=nlj] !
i for all j

[2] = [2.2]U-{2.2} U [2.3] .th1a0 o
F\—?r_ B S

| walt untll k g | |2']
! for all | !
L o om o o = == .l
Alfy 112 1o cves M= Now we have defined Dk: n[k]=o0
r--T T,
| criTicaL —==n[k] =t
® °) SECTION !

AlE sl= L MG }
rP==t -y Can Ekj = (n[k]>0) Ak <<j?

nfkl=0
e hu: E?_ o No, because iy might be choosing a value which will
make j <<k but not yet set, and once its set k << j will
e — be false.
| PROcEE So good Ekj = (n[k] > 0) A (k << V mjis choosing n[j]

L | whichwill make k <<j)
Fig. 5. Stage 2 decomposition of M.

2.3 decomposed further

Rkj = n[k] > o and
if 1j is not changing value of n[j],
then k <<j

Skj = n[k] >0 and

if 1j is choosing value of n[j],
then it will choose value > n[k]

Ekj = Rkj A Skj

nfkl>0 ====2.2

®forj. := 1 until N
i et
: -

do vexit

[U (R | 3
---;‘\[EH:]=
[n[h]bﬂ]nA{E”:j-:jk]- === 2,3.2

| wait until l‘[j
k

| not choosing
| nl]K]

-

Skiklﬁ A{EH 1jef] == (2,34

r- - - _1:2.3.5

| walt until I
! I
Ik g §

K]
L _ P

SRS E S --“'12-3-5

Fig. 6. Stage 3 decomposition of subroutine 2.3,

2.1 decomposed further, introducing cf array

» cfisinitially false alkl=0 —-=|1
* Modified only in2.1.1 and 2.1.5
r= T T T
Pefl k1 := true 12'1'l
L
Rkj = (n[k] > 0) A [(j not in [2.12.3] or [6]) => k << |]
nfkl=0 ----12,1.2
Skj = (n[k]>0) A [(mjis in [2.1.3] =>Tkj]
Tkj = function of mjs local variables (a(K] = Lmaximum(al1], (2.1.3
Tkj = true => either n[k] has not been Lo ey
read by [2.1.3] of mj or its current value
was read nlkl>0 ----|2.1.4
S PR

jefl k] := false |

Fig. 7. Stage 4 decomposition of subroutine 2.1.

2.3.3 "wait until cf[i] = false" operation

) 2.1.4 l’

—-11 Tkj= ([(mk is in {2.1.3.2,

Initial assertion: el GHH;[':I E”*TIE 2.1.3.3}) A(jj >K)] =>
Afrikis in [8] An[k] = 0 A | | . 107 [n[l>nlk) A
(Cf[k]=0 :1SkSN)} cffl k] v true cfl k| « false ([(T[j isin {2.1.3.4,2-1-3-5})
— 2.1.2 A (Jj 2 K1 => [tj] > n[k]DA
e _ DT (s in §2.1.3.6]) A (jj 2
s K1=>I[n[jjl> n[kl])
[k]‘:- 0
r3.[.3.3 ,
temaxalkd, L+alj))]
2104 rost ot |
T e
nlk] « te
|

Fig. 8. The final program.

Event Graph

P1 P2

WCP1=1 WNP2 =val

WNP1>=val+1 \ RCP1=0
f\

WCP1=0 RNP2 << NP1
RCP2=0 CRITICAL
RNP2=0

CRITICAL

Deadlock Freedom

Deadlock situation on a resource can arise if and only if all of the following conditions
hold simultaneouslyin a system:

m Mutual exclusion: Processes are using ME resources
m Hold and Wait

m No preemption

m Circularwait

In Bakery, concurrentreads are non interferring and concurrent writes are impossible

Thank You

