
Dijkstra’s Mutual Exclusion
Protocol

- Tushar, 16D100009

Introduction
● The protocol was introduced by Dijkstra in 1965 in the paper - Solution of a

problem in concurrent programming control

● In the original paper, he refers to the individual processes as ‘computers’

● Dijkstra identified even in 1965 that though the entire setting of N ‘computers’

and the critical section might appear to be academic, anyone who works with

‘computer coupling’ will appreciate the solution

● Dijkstra also requested the readers to try and think of an algorithm without

reading the protocol to see why the solution was far from trivial

Protocol
interested[i] ← true

done ← false

loop

loop % Entry Phase 1

exit when k = i

if not interested[k] then k ← i %try to go next

end loop

passed[i] ← true % begin Entry Phase 2

done ← true

for j ← 1..N except i % check if anyone else has passed Phase 1

if passed[j] then passed[i] ← false; done ← false %go back to Phase 1

end for

exit when done

end loop

CRITICAL SECTION

passed[i] ← false

interested[i] ← false

REMAINDER SECTION

Protocol
● Processes : 1..N

● Shared variables : interested[1:N], passed[1:N], k

● Local variable : done

● interested[1:N] stores which process(es) are interested in entering the critical

section

● passed[1:N] indicates which process(es) have passed phase 1 of the protocol

● passed[1:N] is the main array which helps in implementing mutual exclusion

● k is the process which is allowed to try for the resource next

● done is the local variable which indicates that the process can enter the critical

section

Protocol
interested[i] ← true

done ← false

loop

loop % Entry Phase 1

exit when k = i

if not interested[k] then k ← i % try to go next

end loop

passed[i] ← true % begin Entry Phase 2

done ← true

for j ← 1..N except i % check if anyone else has passed Phase 1

if passed[j] then passed[i] ← false; done ← false % go back to Phase 1

end for

exit when done

end loop

CRITICAL SECTION

passed[i] ← false

interested[i] ← false

REMAINDER SECTION

Proof of mutual exclusion
● No two processes are in the critical section at the same time

● We prove this by contradiction

● Suppose 2 processes i and j are in the critical section at the same time

● Consider the last time each of them set their entry of passed to true before

entering the critical section

● Suppose i did it after j

● Then, when i reads passed[j] in its phase 2, it will see that passed[j] is TRUE and

will go back to phase 1

● This contradicts the fact that i goes into the critical section

Protocol
interested[i] ← true

done ← false

loop

loop % Entry Phase 1

exit when k = i

if not interested[k] then k ← i % try to go next

end loop

passed[i] ← true % begin Entry Phase 2

done ← true

for j ← 1..N except i % check if anyone else has passed Phase 1

if passed[j] then passed[i] ← false; done ← false % go back to Phase 1

end for

exit when done

end loop

CRITICAL SECTION

passed[i] ← false

interested[i] ← false

REMAINDER SECTION

Proof of Progress
● Here, the statement is that if somebody wants to enter the critical section,

eventually someone does get in

● Suppose some processes are trying to get in the critical section and there is no

process currently in the critical section

● Eventually, k will get set to the index of one of the processes trying to enter

● The value of k may change a few times but eventually k will stop changing until

some progress is made because interested[k] is TRUE

● Once it has settled down, that process will wait till other processes are kicked out

from Phase 2 and cannot re-enter

● Then, k will eventually get into the critical section

Other notes on the protocol
● Thus, this protocol implements mutual exclusion and progress as a whole

● The individual threads however might starve - one process might be left out

of the critical section while another enters infinitely often

● The original protocol in the paper used slightly different notations - arrays b

and c

● The interested array is a negation of b and passed is a negation of c

● The protocol uses 2N additional bits and 2 variables : k (shared) and done

(local)

