Aditya

Elimination stack 103050070

Introduction

& Shared stacks are widely used in parallel applications and operating systems.A
concurrent shared stack is a data structure that supports the usual push and pop

operations .

® The algorithm is linearizable and thus easy to modularly combine with other
algorithms, it is lock-free and hence robust, it is parallel and hence scalable, and it
utilizes its parallelization construct adaptively, which allows it to perform well at low

loads.

a T2 --- Pop(D)

void StackOp(ThreadInfo* pInfo) { boolean TryPerformStackOp(ThreadInfo*p){
P1: if(TryPerformStackOp(p)==FALSE) Cell *phead,*pnext;

P2: LesOP(p); Ti: if (p—>op==PUSH) {

;3:Imturn; T2: phead=S.ptop;

void LesOP(ThreadInfo *p) { Ak procal’ prarbepand;

S1: while (1) { T4: if (CAS(&S.ptop,phead, &p->cell))
S2: location[mypid]=p; T5: return TRUE;

S3: pos=GetPosition(p); T6: else

S4: him=collision[pos]; if - return FALSE;

S56: while(!CAS(&collision[pos],him,mypid)) }

S6: him=collision[pos]; T8: if (p->op==POP) {

S7: if (him!=EMPTY) { T9: phead=S.ptop;

S8: g=location[him] ; :)
S9: if (q!=NULL&&q->id==him&&q->op'=p->op) { if (phead==NULL) {

510: if (CAS(&location[mypid],p,NULL)) { : p->cell=EMPTY;
S11: if(TryCollision(p,q)==TRUE) : return TRUE;
512: return; }

513: else : pnext=phead->pnext;
S14: goto stack; : if (CAS(&S.ptop,phead,pnext)) {

}
515: else {
S16: FinishCollision(p);
S517: return; }
} - else {
¥ : p->cell=EMPTY;
} - return FALSE;
delay(p->spin) ; }
if (!CAS(&location[mypid],p,NULL)) { }

FhﬂﬁhFQUJSimﬂp); void FinishCollision(ProcessInfo *p) {
return;

} Fi: if (p->op==POP_0OP) {
F2: p->pcell=location[mypid] ->pcell;
if (TryPerformStackOp(p)==TRUE) F3: location[mypid]=NULL;
return; }

} }

p—>cell=*phead;
return TRUE;

void TryCollision(ThreadInfo*p,ThreadInfo *q) {
Ci: if(p->o0p==PUSH) {
C2: if (CAS(&location[him] ,q,p))
C3: return TRUE;
Ca: else
C5: return FALSE; 3 3 e
} Elimination

C6: if(p->op==POP) {

C7: if (CAS(&location[him],q,NULL)){ BaCkOff

C8: p->cell=q->cell; E;t 1(_(: (1
C9: location [mypid]=NULL; acC oacs

C10: return TRUE

}
Cii: else
C12: return FALSE;
}

}

TOP

Collision Array

POP

Collision Scenarios

Correctness

& Operations can only collide with operations of the opposite type

& ¢ TryCollision can succeed only in case of a successful CAS in line C2 (for a push operation)
or in line C7 (for a pop operation). Such a CAS changes the value of the other thread’s cell in
the location array, thus exchanging values with it and returns without modifying the central
stack object. From the code, before calling TryCollision op has to execute line S9, thus
verifying that it collides with an operation of the opposite type.

& If op is a passive colliding-operation, then op performs FinishCollision, which implies that op
failed in resetting its entry in the location array (in line S10 or s19). Let op1 be the operation
that has caused op’s failure by writing to its entry. From the code, opl must have succeeded
in TryCollision , thus, it has verified in line S9 that its type is opposite to that of op.

Throughput and
latency of different
stack
implementations
with varying

number of threads.

Each thread

performs 50%
pushs, 50% pops.

==
S
c
2
=]
1=
2
:
=]
Z

Average latency per

per second

Throughput

New alg-:mthm______...-r'"
_--"__-r--_-

Treiber with backoff

Latency

+— New algorithm
—m— Treiber with backoff
—a— MCS
—»— Treiber

w— ETree

Threads

Lock Freedom

Algorithm is lock free ,if system as a whole makes progress . Let op be some operation.
[f op manages to collide, then op’s linearization has occurred , and op does not iterate
anymore before returning. Otherwise, op calls

TryPerformStackOp . if TryPerformStackOp returns TRUE, op immediately returns,
and its linearization has occurred ; if, on the other hand, TryPerformStackOp returns
FALSE, this implies that the CAS performed by it has failed, and the only possible
reason for the failure of the CAS by op is the success of a CAS on phead by some other

operation, thus whenever op completes a full iteration, some operation is linearized.

Adaptive

@& Algorithm first tries to access the central stack and only if that fails to back off to the
elimination array. This allows us, in case of low loads, to avoid the collision array
altogether, thus achieving the latency of a simple stack .

@ Each thread t keeps a value spin which holds the amount of time that t should delay
while waiting to be collided. The spin value may change within a predetermined
range. When t successfully collides, it increments a local counter. When the counter
exceeds some limit, t doubles spin. If t fails to collide, it decrements the local
counter. When the counter decreases bellow some limit, spin is halved.

Reference

& https://people.csail.mit.edu/shanit/publications/Lock_Free.pdf

Thank You.

