
cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs (first
half) 2021

Lecture 1: Program modeling and semantics

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2021-01-11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 2

Programs

Our life depends on programs

I airplanes fly by wire

I autonomous vehicles

I flipkart,amazon, etc

I QR-code - our food

Programs have to work in hostile conditions

I NSA

I Heartbleed bug in SSH

I 737Max is falling from the sky

I ... etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 3

Verification

I Much needed technology

I Undecidable problem

I Many fragments are hard

I Open theoretical questions

I Difficult to implement algorithms
I the field is full of start-ups

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 4

Concurrent software

I Important

I Complex

I Buggy

What is so hard about concurrency?

Ensuring reliability is
a bigger challenge

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 5

Schedule blowup

Exercise 1.1
What is the number of schedules between two threads with number of instructions N1 and N2 ?

The blowup is not the only problem.

In the presence of synchronization primitives, the sets of allowed
schedules appear deceptively simple, but are ugly beasts
e. g., locks, barriers, etc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 6

Summarize interleavings

For an effective analysis of concurrent programs, one should be able to efficiently summarize
valid interleavings

A few active lines of research

1. Environment computations
I e.g. if global variable g > 0, some thread increases g by 2.

2. Sequentialization (Code transformation)
I e.g. merge code of thread 1 and 2 such that the effect of the merged code is same as the

original code.

3. Happens-before summaries
I e.g. the write at line 10 must happen before the read at line 20

4. Bounded-context switches
I e.g. maximum number of context switches during an execution is 5.

We will discuss the above methods.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 7

Example: Peterson

int turn; int flag0 = 0, flag1 = 0;

void* p0(void *) {

flag0 = 1;

turn = 1;

while((flag1 == 1) and (turn == 1));

// critical section

flag0 = 0;

}

void* p1(void *) {

flag1 = 1;

turn = 0;

while((flag0 == 1) and (turn == 0));

// critical section

flag1 = 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 8

Example: Concurrent object
Here is an concurrent implementation of queue

Vector q;

// x > 0

void* Enqueue(int x) {

q.push_back(x)

}

int Dequeue () {

while(true) {

l = q.length ()

for(i = 0 ; i < l; i ++) {

x = swap(q, i, 0)

if (x != 0) {

return x

}

}

}

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 9

Topic 1.1

Course contents

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 10

Topic 1.2

Course Logistics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 11

Course structure for first half

We will have 13 meetings

I Lecture 0 is introduction (today)
I Lecture 1-4 Introduction to software model checking for sequential programs

I Understanding CEGAR and its variants

I Lecture 5-9 concurrent programming
I Issues of concurrency, properties for the concurrent programs, mutual exclusion protocols,

synchronization primitives, concurrent objects and their properties

I Lecture 10-13 verification of concurrent programs
I Proof systems
I CEGAR based verification of concurrent programs
I Abstract interpretation based verification
I Bounded model checking

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 12

Course structure

You guys have to present 1-2 papers. Preferably make slides.

Evaluation of first 50% :

I 5% participation

I 10+10% paper presentations or assignments

I 10% quiz

I 20% midterms

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 13

Website

For further information

https://www.cse.iitb.ac.in/~akg/courses/2021-concurrency/

All the assignments and slides will be posted at the website.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://www.cse.iitb.ac.in/~akg/courses/2021-concurrency/
https://www.cse.iitb.ac.in/~akg/courses/2021-concurrency/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 14

Topic 1.3

Program modeling

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 15

Modeling

I Object of study is often inaccessible, we only analyze its shadow

Plato’s cave

I Almost impossible to define the true semantics of a program running on a machine

I All models (shadows) exclude many hairy details of a program

I It is almost a “matter of faith” that any result of analysis of model is true for the program

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 16

Topic 1.4

A simple language

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 17

A simple language : ingredients

I V , vector of rational program variables

I Exp(V) , linear expressions over V

I Σ(V) , linear formulas over V

Example 1.1

V = [x , y]

x + y ∈ Exp(V)

x + y ≤ 3 ∈ Σ(V)

But, x2 + y ≤ 3 6∈ Σ(V)(why?)

sometimes integer

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 18

A simple language: syntax

Definition 1.1
A program c is defined by the following grammar data

c ::= x := exp (assignment)

| x := havoc() (havoc)

| assume(F) (assumption)

| assert(F) (property)
control

| skip (empty program)

| c; c (sequential computation)

| c [] c (nondet composition)

| if(F) c else c (if-then-else)

| while(F) c (loop)

where x ∈ V , exp ∈ Exp(V), and F ∈ Σ(V). Let P be the set of all programs over variables V .
Commentary: This is a toy language, but captures the key ideas of programs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 19

Example: a simple language

Example 1.2

Let V = {r , x}.

assume(r > 0);

while(r > 0) {

x := x + x;

r := r - 1;

}

Exercise 1.2

Write a simple program equivalent of the
following without using if().

if(r > 0)

x := x + x;

else

x := x - 1;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 20

Purpose of havoc

havoc() is used to model two kinds of situations

I Input modeling

Example 1.3

x = read()

is modelled as

x = havoc()

I Modeling unknown functions

Example 1.4

Let us suppose we do not have implementation of foo()

x = foo()

is modelled as

x = havoc()

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 21

A simple language: states

Definition 1.2
A state s is a pair (v ,c), where

I v : V → Q and

I c is yet to be executed part of program.

Definition 1.3
The set of states is S , (Q|V | × P) ∪ {(Error, skip)}.

Example 1.5

The following is a state, where V = [r, x]

([2, 1], x := x + x; r := r− 1)

The purpose of this
state will be clear soon.

v c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 22

Some supporting functions and notations

Definition 1.4
Let exp ∈ Exp(V) and v ∈ V → Q, let exp(v) denote the evaluation of exp at v .

Example 1.6

Let V = [x]. Let exp = x + 1 and v = [2].

(x + 1)([2]) = 3

Definition 1.5
Let random() returns a random rational number.

Definition 1.6
Let f be a function and k be a value. We define f [x→ k] as follows.

for each y ∈ domain(f) f [x→ k](y) =

{
k x == y

f (y) otherwise

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 23

A simple language: semantics

Definition 1.7
The programs define a transition relation T ⊆ S × S. T is the smallest relation that contains the
following transitions.

((v , x := exp), (v [x 7→ exp(v)], skip)) ∈ T

((v , x := havoc()), (v [x 7→ random()], skip)) ∈ T

((v , assume(F)), (v , skip)) ∈ T if v |= F

((v , assert(F)), (v , skip)) ∈ T if v |= F

((v , assert(F)), (Error, skip)) ∈ T if v 6|= F

((v , c1; c2), (v ′, c′1; c2)) ∈ T if ((v , c1), (v ′, c′1)) ∈ T

((v , skip; c2), (v , c2)) ∈ T

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 24

A simple language: semantics (contd.)

((v , c1[]c2), (v , c1)) ∈ T

((v , c1[]c2), (v , c2)) ∈ T

((v , if(F) c1 else c2), (v , c1)) ∈ T if v |= F

((v , if(F) c1 else c2), (v , c2)) ∈ T if v 6|= F

((v , while(F) c1), (v , c1; while(F) c1)) ∈ T if v |= F

((v , while(F) c1), (v , skip)) ∈ T if v 6|= F

T contains the meaning of all programs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 25

Executions and reachability

Definition 1.8
A (in)finite sequence of states (v0, c0), (v1, c1),, (vn, cn) is an execution of program c if c0 = c
and ∀i ∈ 1..n, ((vi−1, ci−1), (vi , ci)) ∈ T.

Definition 1.9
For a program c, the reachable states are T ∗(Q|V | × {c})

Definition 1.10
c is safe if (Error, skip) 6∈ T ∗(Q|V | × {c})

T ∗ is transitive closure of T .

Commentary: Let R ⊆ A× A. We say R0 , {(a, a)|a ∈ A} and Rn+1 , R◦Rn . Transitive closure R∗ ,
⋃

n≥0 Rn

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 26

Example execution

Example 1.7

Consider program

assume(r > 0);

while(r > 0) {

x := x + x;

r := r - 1

}

V = [r, x]

An execution:
([2, 1], assume(r > 0); while(r > 0){x := x + x; r := r− 1; })
([2, 1], while(r > 0){x := x + x; r := r− 1; })
([2, 1], x := x+x; r := r−1; while(r > 0){x := x+x; r := r−1; })
([2, 2], r := r− 1; while(r > 0){x := x + x; r := r− 1; })
([1, 2], while(r > 0){x := x + x; r := r− 1; })
...
([0, 4], while(r > 0){x := x + x; r := r− 1; })
([0, 4], skip)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 27

Exercise: executions

Exercise 1.3
Execute the following code.
Let v = [x]. Initial value v = [1].
assume(x > 0);

x := x - 1 [] x := x + 1;

assert(x > 0);

Now consider initial value v = [0].

Exercise 1.4
Execute the following code.
Let v = [x , y].
Initial value v = [−1000, 2].
x := havoc();

y := havoc();

assume(x+y > 0);

x := 2x + 2y + 5;

assert(x > 0)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 28

Trailing code == program locations

Example 1.8
Consider program

L1: assume(r > 0);

L2: while(r > 0) {

L3: x := x + x;

L4: r := r - 1

}

L5:

V = [r, x]

An execution:
([2, 1], L1)
([2, 1], L2)
([2, 1], L3)
([2, 2], L4)
([1, 2], L2)
...
([0, 4], L2)
([0, 4], L5)

We need not carry around the trailing
program. Program locations are enough.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 29

Stuttering, non-termination, and non-determinism

The programs allow the following not so intuitive behaviors.

I Stuttering

I Non-termination

I Non-determinism

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 30

Stuttering

Example 1.9

The following program will get stuck if the initial value of x is negative.

assume(x > 0);

x = 2

Exercise 1.5
Do real world programs have stuttering?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 31

Non-termination

Example 1.10

The following program will not finish if the initial value of x is negative.

while(x < 0) {

x = x - 1;

}

Exercise 1.6
Do real world programs have non-termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 32

Non-determinism

Example 1.11

The following program can execute in two ways for each initial state.

x = x - 1 [] x = x + 1

Exercise 1.7
Do real world programs have non-determinism?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 33

Expressive power of the simple language

Exercise 1.8
Which details of real programs are ignored by this model?

I heap and pointers

I numbers with fixed bit width

I functions and stack memory

I recursion

I other data types, e.g., strings, integer, etc.

Iany thing else?

We will live with these limitations in the first half of the course.
Relaxing any of the above restrictions is a whole field on its own.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 34

Topic 1.5

Logical toolbox

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 35

Logic in verification

Differential equations
are the calculus of

Electrical engineering

Logic
is the calculus of
Computer science

Logic provides tools to define/manipulate computational objects

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 36

Applications of logic in Verification

I Defining Semantics: Logic allows us to assign “mathematical meaning” to programs

P

I Defining properties: Logic provides a language of describing the “mathematically-precise”
intended behaviors of the programs

F

I Proving properties: Logic provides algorithms that allow us to prove the following
mathematical theorem.

P |= F
The rest of the lecture is
about making sense of “|=”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 37

Logical toolbox

We need several logical operations to implement verification methods.

Let us go over some of those.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 38

Logical toolbox : satisfiablity

s |= F ?
Example 1.12

{x 7→ 1, y 7→ 2} |= x + y = 3.

Exercise 1.9
I {x → 1} |= x > 0?

I {x → 1, y → 2} |= x + y = 3 ∧ x > 0?

I {x → 1, y → 2} |= x + y = 3 ∧ x > 0 ∧ y > 10?

Exercise 1.10
Can we say something more about the last formula?

model formula

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 39

Logical toolbox : satisfiablity
Is there any model?

|= F ?
Harder problem!

Exercise 1.11
I |= x + y = 3 ∧ x > 0?

I |= x + y = 3 ∧ x > 0 ∧ y > 10?

I |= x > 0 ∨ x < 1?

Exercise 1.12
Can we say something more about the last formula?

disjunction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 40

Logical toolbox : validity

Is the formula true for all models?

∀s : s |= F ?
Even harder problem?

We can simply check satisfiability of ¬F .

Example 1.13

x > 0 ∨ x < 1 is valid because x ≤ 0 ∧ x ≥ 1 is unsatisfiable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 41

Logical toolbox : implication

F ⇒ G?
We need to check F ⇒ G is a valid formula.
We check if ¬(F ⇒ G) is unsatisfiable, which is equivalent to checking if F ∧¬G is unsatisfiable.

Example 1.14

Consider the following implication

x = y + 1 ∧ y ≥ z + 3⇒ x ≥ z

After negating the implication, we obtain x = y + 1 ∧ y ≥ z + 3 ∧ x < z.

After simplification, we obtain x − z ≥ 4 ∧ x − z < 0.

Therefore, the negation is unsatisfiable and the implication is valid.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 42

Logical toolbox : quantifier elimination

given F , find G such that G (y) ≡ ∃x . F (x , y)

Is this harder problem?

Example 1.15

Consider formula ∃x . x > 0 ∧ x ′ = x + 1

After substituting x by x ′ − 1, ∃x . x ′ − 1 > 0.

Since x is not in the formula, we drop the quantifier and obtain x ′ > 1.

Exercise 1.13
a. Eliminate quantifiers: ∃x , y . x > 2 ∧ y > 3 ∧ y ′ = x + y
b. What do we do when ∨ in the formula?
c. How to eliminate universal quantifiers?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 43

Logical toolbox : induction principle

F (0) ∧ ∀n. F (n)⇒ F (n + 1) ⇒ ∀n : F (n)

Example 1.16

We prove F (n) = (
∑n

i=0 i = n(n + 1)/2) by induction principle as follows

I F (0) = (
∑0

i=0 i = 0(0 + 1)/2)

I We show that implication F (n)⇒ F (n + 1) is valid, which is

(
n∑

i=0

i = n(n + 1)/2)⇒ (
n+1∑
i=0

i = (n + 1)(n + 2)/2).

Exercise 1.14
Show the above implication holds using a satisfiability checker.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 44

Logical toolbox : interpolation

find a simple I such that A⇒ I and I ⇒ B
For now, no trivial to see the important of interpolation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 45

Logical toolbox

In order to build verification tools, we need tools that automate the logical questions/queries.

Hence CS 433: automated reasoning.

In the first four lectures, we will see the need for automation.

In this course, we will briefly review available logical tool boxes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 46

Topic 1.6

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 47

Induction problems

Exercise 1.15
Prove: If there is a human with an ancestor that is a monkey, then there is a human with a
parent that is a monkey.

Exercise 1.16
Show that the following induction proof is flawed.
claim: All horses have same color
base case:
One horse has single color
induction step:
We assume that n horses have same colors.
Take n + 1 horses h1, .., hn+1.
h1, .., hn have same color (hyp.)
h2, .., hn+1 have same color (hyp.)
Therefore, h1, .., hn+1 have same color.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 48

Variable elimination in linear constraints

Exercise 1.17
Eliminate x from the following constraints

x − 3y ≤ 0 ∧ y + 4 ≤ x ∧ y ≤ 6

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 49

Simple language

Exercise 1.18
Write a program in simple language that does uses stuttered executions to implement branching.

Exercise 1.19
In a real-world programming language, how one may simulate the behavior of assume statement?
Are there any languages that provide assume like statement?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 50

Safe programs

Exercise 1.20
Is the following program safe?

assume(x > 0);

assert(x > 2);

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 51

End of Lecture 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 52

Topic 1.7

Extra topic: Big-step semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 53

Variation in semantics

There are different styles of assigning meanings to programs

I Operational semantics

I Denotational semantics

I Axiomatic semantics

We have used operational semantics style.

We will ignore the last two in this course (very important topic!).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 54

Small vs big step semantics

There are two sub-styles in operational semantics

I Small step (our earlier semantics)

I Big step

To appreciate the subtle differences in the styles, now we will present big step operational
semantics

Big step semantic ignores intermediate steps.
It only cares about the final results.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 55

Notation alert: deduction rules

RuleName Stuff-already-there
Stuff-to-be-added Conditions to be met

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 56

Big step operational semantics

Definition 1.11
P defines a reduction relation ⇓ : S × (Error ∪Q|V |) via the following rules.

(v , x := exp) ⇓ v [x 7→ exp(v)] (v , x := havoc()) ⇓ v [x 7→ random()]

v |= F

(v , assume(F)) ⇓ v

v |= F

(v , assert(F)) ⇓ v

v 6|= F

(v , assert(F)) ⇓ Error

(v , skip) ⇓ v

(v , c1) ⇓ v ′ (v ′, c2) ⇓ v ′′

(v , c1; c2) ⇓ v ′′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 57

Big step operational semantics (contd.)

(v , c1) ⇓ v ′

(v , c1[]c2) ⇓ v ′
(v , c2) ⇓ v ′

(v , c1[]c2) ⇓ v ′

v |= F (v , c1) ⇓ v ′

(v , if(F) c1 else c2) ⇓ v ′
v 6|= F (v , c2) ⇓ v ′

(v , if(F) c1 else c2) ⇓ v ′

v 6|= F

(v , while(F) c) ⇓ v

v |= F (v , c) ⇓ v ′ (v ′, while(F) c) ⇓ v ′′

(v , while(F) c) ⇓ v ′′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 58

Example: big step semantics

Example 1.17

Let v = [x].Consider the following code.
L1: while(x < 5) {

L2: x := x + 1

}

L3:

Small step:
{(([n], L1), ([n], L3))|n ≥ 5} ⊆ T
{(([n], L1), ([n], L2))|n < 5} ⊆ T
{(([n], L2), ([n + 1], L1))|n < 5} ⊆ T

Big step:
{(([n], L3), n)|n ∈ Q} ⊆ ⇓
{(([n], L2), 5)|n < 5} ∪ {(([n], L2), n + 1)|n ≥ 5} ⊆ ⇓
{(([n], L1), 5)|n < 5} ∪ {(([n], L1), n)|n ≥ 5} ⊆ ⇓

Exercise 1.21
Draw ⇓ edges.

L1

L2

L3

1 5x

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 59

Exercise: big step semantics

Exercise 1.22
Let v = [x].Consider the following code.

L1: while(x < 10) {

L2: if x > 0 then

L3: x := x + 1

else

L4: skip

}

L5:

Write the relevant parts of T and ⇓ wrt to the above program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 60

Agreement between small and big step semantics

Theorem 1.1

(v ′, skip) ∈ T ∗(c, v) ⇔ (v , c) ⇓ v ′

Proof.
Simple structural induction.

This theorem is not that strong as it looks. Stuck and non-terminating executions are not
compared in the above theorem.

Exercise 1.23
a. What are other differences between small and big step semantics?
b. What is denotational semantics? ... search web

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Course contents
	Course Logistics
	Program modeling
	A simple language
	Logical toolbox
	Problems
	Extra topic: Big-step semantics

