
cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs (first
half) 2021

Lecture 19: Practical model checking

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2021-03-11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 2

Limited verification

Full verification is a very hard goal.

Soundiness: May be reduced objectives give us reasonable guarantees.

We will look at two popular methods that have been widely used.

1. Bounded model checking

2. Concolic testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 3

Topic 19.1

Bounded Model checking

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 4

Avoid complete fixed point computation

I For many programs symbolic model checking does not terminate

I Lets compromise in computing fixed point

I We can symbolically execute up to a fixed depth

I Very useful tool in falsification(bug finding)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 5

Bounded model checking(BMC)

Algorithm 19.1: Bounded model checking

Input: P = (V , L, `0, `e ,E) and bound b
1 reach : L→ Σ(V) := λx .⊥; worklist := {(`0,>, 0)};
2 while worklist 6= ∅ do
3 choose (`,F , d) ∈ worklist; worklist := worklist \ {(`,F , d)};
4 if d ≤ b and ¬(F ⇒ reach(`)) is sat then
5 reach := reach[` 7→ reach(`) ∨ F];
6 foreach (`, ρ(V ,V ′), `′) ∈ E do
7 worklist := worklist ∪ {(`′, sp(F , ρ), d + 1)};

8 if reach(`e) 6= ⊥ then
9 return Unsafe

10 else
11 return Safe up to depth b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 6

Implementing BMC

A BMC tool is not implemented as discussed earlier

The program is turned into a giant satisfiability problem and solved using a satisfiability solver.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 7

Bounding using loop unrolling

I Unroll the loops a fixed number of times, say n, and add appropriate if-conditions for early
exists from the loop.

I Modify recursive function calls similarly

In some execution of the original programs, if a loop executes more than n times then the
modified program will reach a dead end.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 8

Example: bounded loop unrolling

Example 19.1

Original program
x=0;

while (x < 2) {

y=y+x;

x++;

assert(y < 5);

}

Unrolled the loop three times
x=0;

if(x < 2) {

y=y+x;

x++;

assert(y < 5);

if(x < 2) {

y=y+x;

x++;

assert(y < 5);

if(x < 2) {

y=y+x;

x++;

assert(y < 5);

}

if(!(x < 2)) goto DEAD_END;

}

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 9

SSA encoding and SMT formula
The loop free program is translated into single static assignment(SSA) form.
I After every assignment fresh names are given to the variables
I At join points instructions are added to feed in correct values

Example 19.2

Original program
foo(x,y) {

x=x+y;

if (x!=1)

x=2;

else

x++;

assert(x<=3);

}

Program after SSA transformation

foo(x0 ,y0) {

x1 = x0 + y0;

if(x1 != 1)

path_b = 1

x2 = 2;

else

path_b = 0

x3 = x1 + 1;

x4 = path_b ? x2 : x3;

assert(x4 <= 3);

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 10

SSA to SMT formula
An SSA program can be easily translated into a formula.

Example 19.3

Original program

foo(x0 ,y0) {

x1 = x0 + y0;

if(x1 != 1)

path_b = 1

x2 = 2;

else

path_b = 0

x3 = x1 + 1;

x4=path_b?x2:x3;

assert(x4 <= 3);

}

QF LIA formula for the SSA program

(assert (= x1 (bvadd x0 y0)))

(assert (= x2 #x00000002))

(assert (= x3 (bvadd x1 #x00000001)))

(assert (= path_b (distinct x1 1))

(assert (ite path_b (= x4 x2) (= x4 x3)))

(assert (not (bvsle x4 3)))

If the above is sat, the program has a bug

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 11

SMT Input
The SMT input with all the needed declarations.

(set-logic QF_BV)

(declare-fun x0 () (_ BitVec 32))

(declare-fun x1 () (_ BitVec 32))

(declare-fun x2 () (_ BitVec 32))

(declare-fun x3 () (_ BitVec 32))

(declare-fun x4 () (_ BitVec 32))

(declare-fun y0 () (_ BitVec 32))

(declare-fun path_b () (Bool))

(assert (= x1 (bvadd x0 y0)))

(assert (= x2 #x00000002))

(assert (= x3 (bvadd x1 #x00000001)))

(assert (= path_b (distinct x1 #x00000001)))

(assert (ite path_b (= x4 x2) (= x4 x3)))

(assert (not (bvsle x4 #x00000003)))

(check-sat)

Let us feed the
problem to Z3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 12

CBMC

I Takes C/C++ programs as input and a loop unrolling bound k

I Returns an error execution or proves safety upto k unrolling of loops

I Robust tool, can take any input

Let us play with CBMC!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 13

An effective technology

I There are very successful BMC tools, e. g., CBMC

I Not a full verification method, but somewhat better than testing

I Implementations may unroll the program upto depth b and then generate path constraints
for all the unrolled paths and solve the constraints

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 14

Topic 19.2

Concurrent BMC

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 15

BMC for concurrent programs

I Full verification of concurrent programs is hard.

I Most tools use some form of Bounded verification

I Let us see how to do BMC for C program

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 16

Set of Events

An execution of program generates a set of read/write events E .

We define a relation po over E as follows.

Definition 19.1
For e1, e2 ∈ E , (e1, e2) ∈ po if e1 was generated before e2 by the same thread.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 17

Memory operation relation

The read write operations create the following relations ⊆ E × E .

I rf : every read reads from exactly one write

I ws : all writes on a global are totally ordered

I fr : no other write comes between the write-read pairs in rf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 18

Execution relations and condition

Memory model has conditions on the relations, which are

I po program order

I rf read from

I ws write serialization

I fr from read

Theorem 19.1
In a valid execution, po ∪ rf ∪ ws ∪ fr is acyclic

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 19

Example: execution

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post: (a1=1 && a2=1)⇒c1+c2=2*v

Inalid execution:

w1

w2

w3

w4

pre

r1

r2

r3

r4

popo

ws
rf

fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 20

Constraints generation

If we want to do bounded model checking, we check satisfiability of the following formula.

The formula F := F1 ∧ F2 ∧ F3 ∧ F4 that encodes violating executions has four parts

1. F1 = SSA formula

2. F2 = well-formed rf

3. F3 = write serialization

4. F4 = fr constraints

We will present some of the above constraints.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 21

SSA formula(F1)
Reads/writes on the globals, and writes to locals get fresh names.

Let us consider our example again.
pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post: (a1=1 && a2=1)⇒c1+c2=2*v

The SSA encoding of the above is

W.pre.m1 = 0 ∧ W.pre.s1 = 0∧W.pre.m2 = 0∧W.pre.s2 = 0 (pre)

W.w1.m1 = v∧W.w2.m2 = v ∧ W.w3.s1 = 1 ∧ W.w4.s2 = 1 (T1)

a1 = R.r1.s1 ∧ c1 = R.r2.m1 ∧ a2 = R.r3.s2∧c2 = R.r4.m2 (T2)

¬((a1 = 1 ∧ a2 = 1)⇒ c1 + c2 = 2v) (post)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 22

Well-formed rf(F2)

Every read reads from exactly one write and the write happens before the read.

We need to introduce a few variables.

We use clock variables for the timing of the events.

I Integer tW.w3.s1 encodes the time when the write at w3 occurred.

We also create a Boolean variable for each potential write-read pair.

I Boolean bpre.r1.s1 indicates that the read at r1 of s1 is reading from the write at pre.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 23

Well-formed rf(F2)(contd.)
pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post: (a1=1 && a2=1)⇒c1+c2=2*v

Consider the read of s1 at r1. It may read from two writes, which are the initialization and the
write at w3.

This is encoded as follows.

(bpre.r1.s1 ∨ bw3.r1.s1) ∧ (bpre.r1.s1 ⇒ W.pre.s1 = R.r1.s1) ∧ (bw3.r1.s1 ⇒ W.w3.s1 = R.r1.s1)

Constrains for encoding the happens-before condition

(bw3.r1.s1 ⇒ tW.w3.s1 < tR.r1.s1) Similar constraints are
generated for each read.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 24

Write serialization and fr condition (F3)

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post: (a1=1 && a2=1)⇒c1+c2=2*v

Here are the fr constraints.

(bpre.r1.s1 ⇒ tR.r1.s1 < tW.w3.s1) ∧ (bpre.r2.m1 ⇒ tR.r2.m1 < tW.w1.m1)∧
(bpre.r3.s2 ⇒ tR.r3.s2 < tW.w4.s2) ∧ (bpre.r4.m2 ⇒ tR.r4.m2 < tW.w2.m2)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 25

po condition (F4)

We need to encode the intra-thread order of events that is preserved by the model. Recall, writes
on different globals are relaxed.

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post: (a1=1 && a2=1)⇒c1+c2=2*v

po for T1: (tW.pre. < tW.w1.m1 < tW.w2.m2 < tW.w3.s1 < tW.w4.s2)

po for T2: (tW.pre. < tR.r1.s1 < tR.r2.m1 < tR.r3.s2 < tR.r4.m2)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2021 Instructor: Ashutosh Gupta IITB, India 26

End of Lecture 19

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Bounded Model checking
	Concurrent BMC

