
CS766

09 Feb 2021

Mutual exclusion protocols

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Analysis of Concurrent Programs

Szymanski Algorithm

Karnika Shivhare
IITB 204050010

A (class) presentation by

SZYMANSKI
ALGORITHM

Algorithm for mutual exclusion

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SZYMANSKI ALGORITHM

Drawbacks of previous discussed algorithms:

PETERSON O(n2) pre-protocol

BAKERY Use unbounded ticket numbers

DEKKER Don’t scale well beyond 2 processes

Out of scope of the 15 minutes.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Critical Section = Presentation

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Flag[self] = 1

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Everyone raised their flags

= 1 who wished to enter

critical section at around

same time.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

In Crictical Section
Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SZYMANSKI ALGORITHM

Idea

The prologue is modeled after a waiting room

with two doors.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SZYMANSKI ALGORITHM

Idea

The prologue is modeled after a waiting room

with two doors.

All processes requesting entry to the CS at

roughly the same time gather first in the

waiting room.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SZYMANSKI ALGORITHM

Idea

The prologue is modeled after a waiting room

with two doors – entry and exit.

All processes requesting entry to the CS at

roughly the same time gather first in the

waiting room.

Last of them closes the entry door and opens

the exit door.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SZYMANSKI ALGORITHM

Idea

The prologue is modeled after a waiting room

with two doors.

All processes requesting entry to the CS at

roughly the same time gather first in the

waiting room.

Last of them closes the entry door and opens

the exit door.

From there, one by one, they enter their CS.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SZYMANSKI ALGORITHM

Idea

The prologue is modeled after a waiting room

with two doors.

All processes requesting entry to the CS at

roughly the same time gather first in the

waiting room.

Last of them closes the entry door and opens

the exit door.

From there, one by one, they enter their CS.

The last process to leave the CS, closes the exit

door and reopens the entry door, so that the

next batch of processes may enter.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SZYMANSKI ALGORITHM
Idea

The prologue is modeled after a waiting room

with two doors.

All processes requesting entry to the CS at

roughly the same time gather first in the

waiting room.

Then, when there are no more processes

requesting entry, waiting processes move to the

end of the prologue.

From there, one by one, they enter their CS.

Any other process requesting entry to its CS at

that time has to wait in the initial part of the

prologue (before the waiting room).
Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

SHARED VARIABLES

Each process exclusively writes a variable flag, which is read by all the other processes.

It assumes one of five values:

0 Executing non-CS

1 i wants to enter the CS

2 i waits for other processes to enter waiting room

3 i just entered the waiting room

4 i is leaving the waiting room. entry door is closed and exit door is open.

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

ENTRY PROTOCOL

flag[self] ← 1

await(all flag[1..N] ∈ {0, 1, 2})

flag [self] ← 3

if any flag[1..N] = 1:

flag[self] ← 2

await(any flag[1..N] = 4)

flag[self] ← 4

await(flag[1..self-1] ∈ {0, 1})

EXIT PROTOCOL

await(all flag [self+1..N] ∈ {0, 1, 4})

flag[self] ← 0

Critical Section

SZYMANSKI ALGORITHM

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

ENTRY PROTOCOL process 1

flag[self =1] ← 1

await(flag[2] ∈ {0, 1, 2})

flag [self = 1] ← 3

if flag[2] = 1:

flag[self =1] ← 2

await(if flag[2] = 4)

flag[self = 1] ← 4

//await(flag[1..self-1] ∈ {0, 1})

EXIT PROTOCOL

await(flag[2] ∈ {0, 1, 4})

flag[self = 1] ← 0

process 1 in Critical Section

ENTRY PROTOCOL process 2

flag[self =2] ← 1

await(flag[1] ∈ {0, 1, 2})

flag [self = 2] ← 3

if flag[1] = 1:

flag[self =2] ← 2

await(flag[1] = 4)

flag[self = 2] ← 4

await(flag[1] ∈ {0, 1})

EXIT PROTOCOL

await(flag[1] ∈ {0, 1, 4})

flag[self = 2] ← 0

Process 2 in Critical Section

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

1,0

0,1
1,1

3,0

4,0

CS (1)

0,0

0,3

0,4

CS (2)

CS (2)

1,3

4,3 1,2

3,3

3,2

4,2

CS (1)

0,2

0,4

0,3

CS (1)

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

1,0

0,1
1,1

3,0

4,0

CS (1)

0,0

0,3

0,4

CS (2)

3,1

2,1

2,3

2,4

CS (2)CS (2)

2,0

1,3

4,3 1,2

3,3

3,2

4,2

CS (1)

0,2

0,4

0,3

CS (1)

0,0

4,1

CS (1)

0,1

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

1,0 1,1

3,0

4,0

CS (1)

0,0

3,1

2,1

2,3

2,4

CS (2)

1,3

4,3 1,2

3,3

3,2

4,2

CS (1)

0,2

0,4

0,3

CS (1)

0,0

2,1

4,1

CS (1)

0,1

2,3

2,1

CS (2)

1,0

1,4

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

1,0

0,1
1,1

3,0

4,0

CS (1)

0,0

0,3

0,4

CS (2)

3,1

2,1

2,3

2,4

CS (2)CS (2)

2,0

1,3

4,3 1,2

3,3

3,2

4,2

CS (1)

0,2

0,4

0,3

CS (1)

0,0

2,1

4,1

CS (1)

0,1

2,3

2,1

CS (2)

1,0

1,4

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Wf2 := 0

Wf1 := 1

po

Rf2 := 0

po

Wf1 := 3

po

Rf2 := 0

po

Wf4 := 4

po

Rf2 : = 0

po

Wf1 := 0

rf

rf

rf

co

co

co

co

co

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

Wf2 := 0

Wf1 := 1

po

Rf2 := 0

po

Wf1 := 3

po

Rf2 := 0

po

Wf4 := 4

po

Rf2 : = 0

po

Wf1 := 0

rf

rf

rf

co

co

co

co

co
Wf2 := 1fr

fr

fr

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

• order of the "all" and "any" tests must be uniform.

• Also the "any" tests should be satisfied by a thread other than self.

For example,

if the test is any flag[1..N] = 1 and only flag[self] = 1, then the test is
said to have failed/returned 0

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

• The protocol,

• correctness arguments,

• n-thread version, and

• discussion about the cost of the protocol

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

1.) “A simple solution to Lamport's concurrent programming problem with

linear wait”

https://www.researchgate.net/publication/221235887_A_simple_solution_to_

Lamport's_concurrent_programming_problem_with_linear_wait

2.) https://en.wikipedia.org/wiki/Szyma%C5%84ski%27s_algorithm

3.) CS766 https://www.cse.iitb.ac.in/~akg/courses/2021-concurrency/

4.) https://www.sarc-iitb.org/events/core-talks/

Thank You

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

https://www.researchgate.net/publication/221235887_A_simple_solution_to_Lamport's_concurrent_programming_problem_with_linear_wait
https://en.wikipedia.org/wiki/Szyma%C5%84ski%27s_algorithm
https://www.cse.iitb.ac.in/~akg/courses/2021-concurrency/
https://www.sarc-iitb.org/events/core-talks/

1.) “A simple solution to Lamport's concurrent programming problem with linear wait”

https://www.mimuw.edu.pl/~sl/teaching/13_14/PWiR/zadanie1/szymanski.88.pdf

2.) https://en.wikipedia.org/wiki/Szyma%C5%84ski%27s_algorithm

3.) The Art of Multiprocessor Programming by Nir Shavit

4.) https://www.cse.iitb.ac.in/~akg/courses/2021-concurrency/lec-concurrency-how-to-think.pdf

5.) https://www.youtube.com/playlist?list=PLssOvQUpC9clEGbrWDTbroK63tzx0Lwcu

6.) https://link.springer.com/content/pdf/10.1007%2FBFb0054187.pdf

References

Karnika Shivhare 204050010 IITB CS 766 9th Feb 2021

https://en.wikipedia.org/wiki/Szyma%C5%84ski%27s_algorithm
https://www.cse.iitb.ac.in/~akg/courses/2021-concurrency/lec-concurrency-how-to-think.pdf

