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Topic 2.1

Propositional logic - Syntax
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Syntax

We need a quick method of identifying if a group of symbols is a logical argument.

We usually define a syntax.

Example 2.1

Grammar of English

Let us define syntax for propositional logic
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Propositions

The logic is over a list of propositions.

I Sky is blue

I Sun is hot

I ... many more

We do not care what each one says. We give each one of them a symbol.
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Propositional variables

We assume that there is a countably-infinite set Vars of propositional variables.

I Since Vars is countable, we assume that variables are indexed.

Vars = {p1, p2, . . . }

I The variables are just names/symbols without inherent meaning

I We may also use p, q, r , .., x , y , z to denote the propositional variables

I Propositional variables are also called Boolean variables

Commentary: All results presented in this course are extendable to uncountable Vars. For the uncountable setting, we need transfinite induction. We will ignore those
extensions.
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Logic connects the variables

A logical argument connects the propositions.

Let us list all the possible ways of connecting them.
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True and false

We should be able to talk about

I always true statement

I always false statement

Example 2.2

I An apple is an apple always true

I I like Apple and I do not like Apple always false
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Logical connectives: Not, And, and Or

We may also need ability to say

I a statement that says negation of another

I two statements are true at the same time

I at least one of the two statements are true

Example 2.3

I The apple is not sweet.

I The apple is sweet and Delhi is far.

I The apple is sweet or Delhi is far.
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More logical connectives: Implies, equality, and disequality
We may also need ability to say
I Implication

if a statement is true then some other statement is also true

I Equivalence
truth value of two statements are same

I Disequality
truth value of two statements are different
I Usually called exclusive or, meaning exactly one of the two is true

Example 2.4

I If I work then I make money. (implication)

I I like an apple if and only if I like a pen. (equivalence)

I A is here or B is here, but both are not here. (exclusive or)
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Logical connectives

The following 10 symbols are called logical connectives.

formal name symbol read as

true > top
}

0-ary symbols
false ⊥ bot

negation ¬ not
}

unary symbols
conjunction ∧ and

binary symbols
disjunction ∨ or
implication ⇒ implies
equivalence ⇔ if and only if
exclusive or ⊕ xor

open parenthesis (
}

punctuation
close parenthesis )

We assume that the logical connectives are not in Vars.
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Propositional formulas

A propositional formula is a finite string containing symbols in Vars and logical connectives.

Definition 2.1
The set of propositional formulas is the smallest set P such that

I >,⊥ ∈ P

I if p ∈ Vars then p ∈ P

I if F ∈ P then ¬F ∈ P

I if ◦ is a binary symbol and F ,G ∈ P then (F ◦ G ) ∈ P
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Some notation

Definition 2.2
>,⊥, and p ∈ Vars are atomic formulas.

Definition 2.3
For each F ∈ P, let Vars(F ) be the set of variables appearing in F .
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Examples of propositional formulas

Exercise 2.1
Which of the following are in P?

I > ⇒ ⊥ 7

I (> ⇒ ⊥) 3

I (p1 ⇒ ¬p2) 3

I (p1)7

I ¬¬¬¬¬¬¬p1 3

Not all strings over Vars and logical connectives are in P.

How can we argue that a string does or does not belong to P?

We need a method to recognize
a string belongs to P or not.

Commentary: Please carefully look at the generation grammar. We need to carefully understand the role of parenthesis to disambiguate formulas. It is an interesting
note that ¬ does not need parenthesis.
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Topic 2.2

Encoding arguments into logic
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Example : symbolic argument

Example 2.5

We have seen the following argument.

If c then if s then f . not f . Therefore, if s then not c.

where

I c = the seed catalogue is correct

I s = seeds are planted in April

I f = the flowers bloom in July

We can write the above argument as propositional formula as follows

( ( (c ⇒ (s ⇒ f ))︸ ︷︷ ︸
Premise 1

∧ ¬f︸ ︷︷ ︸
Premise 2

) ⇒ (s ⇒ ¬c)︸ ︷︷ ︸
Conclusion

)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 16

Example: symbolizing bad and good puzzle

Example 2.6

The good people always tell the truth and the not good people always tell a lie. Now let us
consider the following puzzle.

There are two people A and B. A says, “I am not good or B is good”. What are A and B?

Let us give symbols to propositions:

I pA = A is good.

I pB = B is good.

Therefore, we encode the puzzle as follows.

( (¬pA ∨ pB)︸ ︷︷ ︸
Statement of A

⇔ pA)

To solve the puzzle, we need a satisfying assignment to the formula.

Problem Context

Commentary: The puzzle is borrowed from
What is The Name of This Book? by Raymond
M. Smullyan
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Topic 2.3

Parsing formulas
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Parse tree

F ∈ P iff F is obtained by unfolding of the generation rules

Definition 2.4
A parse tree of a formula F ∈ P is a tree such that

I the root is F ,

I leaves are atomic formulas, and

I each internal node is formed by applying some formation rule on its children.

Example 2.7
(p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

p1 (¬p2 ⇔ (p1 ∧ p3))

¬p2

p2

(p1 ∧ p3)

p1 p3
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Parse tree and unique parsing

Theorem 2.1
F ∈ P iff there is a parse tree of F .

Proof.
The reverse direction is immediate. In the forward direction, we prove a stronger theorem, i.e.,
existence of unique parsing tree.

Theorem 2.2
Each F ∈ P has a unique parsing tree.

Proof.
The proof is at the last section of the slides.

Commentary: The proof is needed for the rigor of logic. However, we skipped the proof in the class.
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Parse tree is a directed-acyclic graph (DAG)
We have been thinking that the parsing produces parse tree.

However, the parsing produces a parse DAG.

Example 2.8

Consider formula (p1 ∨ (¬p1 ∧ p2)). The following is the parse tree of the above formula.

(p1 ∨ (¬p1 ∧ p2))

(¬p1 ∧ p2)

¬p1 p2

p1
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Subformula

Definition 2.5
A formula G is a subformula of formula F if G occurs within F . G is a proper subformula of F if
G 6= F . Let sub(F ) denote the set of subformulas of F .

The nodes of the parse tree of F form the set of subformulas of F .

Definition 2.6
Immediate subformulas are the children of a formula in its parse tree, and leading connective is
the connective that is used to join the children.

Example 2.9

sub((¬p2 ⇔ (p1 ∧ p3))) = {(¬p2 ⇔ (p1 ∧ p3)),¬p2, (p1 ∧ p3), p1, p2, p3}

The leading connective of F is ⇔.
Commentary: Note that the above definition does not allow p2 ⇔ (p1 ∧ p3) to be a subformula of F , because p2 ⇔ (p1 ∧ p3) is not a formula. In later discussions,
we may drop parenthesis in our writings and it may cause confusion. So, when we apply the above definition we need to keep the invisible parentheses in our mind.
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Topic 2.4

Shorthands
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Too many parentheses
In the above syntax, we need to write a large number of parentheses.

Using precedence order over logical connectives, we may drop some parentheses without losing
the unique parsing property.

Example 2.10

Consider ((p ∧ q)⇒ (r ∨ p))

I We may drop outermost parenthesis without any confusion

(p ∧ q)⇒ (r ∨ p)

I If ∧ and ∨ get precedence over ⇒ during parsing, we do not need the rest of parentheses

p ∧ q ⇒ r ∨ p
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Precedence order

We will use the following precedence order in writing the propositional formulas

¬

∧∨ ⊕

⇔ ⇒

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Using precedence order

Consider the following formula for n > 1

F0 ◦1 F1 ◦2 F2 ◦3 · · · ◦n Fn,

where F0,..,Fn are either atomic or enclosed by parentheses, or their negation.

We transform the formula as follows

I Find an ◦i such that ◦i−1 and ◦i+1 have lower precedence if they exist.

I Introduce parentheses around Fi−1 ◦i Fi and call it F ′i , (Fi−1 ◦i Fi ).

F0 ◦1 · · · ◦.. Fi−2 ◦i−1 F
′
i ◦i+1 Fi+1 ◦.. · · · ◦n Fn

We apply the above until n = 1 and then apply the normal parsing.

Inside of Fi s may also have ambiguities, which are recursively resolved using the above procedure.
Commentary: We have not presented the above as a formal algorithm. However, we can present the procedure in the above style. You will find many computer science
texts do not write their algorithms in a formal presentation to avoid cumbersome notation. Please learn to handle.
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Example: parsing using the precedence order

Example 2.11

Consider formula p ∧ q ⇒ r ∨ p. Let us try to bring back the parentheses.

⇒ has lower precedence than ∧, therefore we can group neighbours of ∧

(p ∧ q)⇒ r ∨ p

Since ∨ has higher precedence over ⇒, we first group ∨.

(p ∧ q)⇒ (r ∨ p)

Now we can group ⇒ without any confusion

((p ∧ q)⇒ (r ∨ p))
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Example precedence order

Example 2.12

Which of the following formulas can be unambiguously parsed?

I ¬p ∨ (p ⊕ q)⇔ p ∧ q 3

I p ∨ q ∧ r 7

I p ∨ q ∨ r 7

I p ⇒ q ⇒ r 7

Associativity preference may further
reduce the need of parenthesis
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Associative
Problem: If a binary operator repeats, we do not know how to group.

Solution: we give preference to one side or another.

Let us make all our operators “right associative”, i.e., first group the rightmost occurrence.

Example 2.13

Consider formula p ⇒ q ⇒ r .

We first group the right ⇒: p ⇒ (q ⇒ r)

Then, we group the left ⇒: (p ⇒ (q ⇒ r))

Exercise 2.2
Modify the parsing procedure of the earlier slide to support the above.

Commentary: Not all operators are affected by asso-
ciativity. For example, ∧ and ∨ operators have same
meaning if we use any order of associativity. On the
other hand, ⇒ needs a convention for associativity.
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Substitution

Definition 2.7
For F ∈ P and p1, . . . , pk ∈ Vars, let F [G1/p1, . . . ,Gk/pk ] denote another formula obtained by
simultaneously replacing all occurrence of pi by a formula Gi for each i ∈ 1..k.

Example 2.14

1. (p ⇒ (r ⇒ p))[(r ⊕ s)/p] = ((r ⊕ s)⇒ (r ⇒ (r ⊕ s)))

2. (p ⇒ (r ⇒ p))[(r ⊕ s)/p, x/r ] 6= (p ⇒ (r ⇒ p))[(r ⊕ s)/p][x/r ]

Exercise 2.3
a. Definition 2.7 is informal. Give a formal definition.
b. Write the result of substitutions in the second example.
c. Give a most general restriction on substitutions such that simultaneous and sequential
substitutions produce the same result.
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Notation for substitution

For shorthand, we may write a formula F as

F (p1, . . . , pk),

where we say that variables p1, . . . , pk play a special role in F .

Let F (G1, . . . ,Gn) be F [G1/p1, . . . ,Gk/pk ].

Example 2.15

Let F (p, q) = ¬p ⊕ q

F (r ∨ q,>) = ¬(r ∨ q)⊕>

Commentary: This notation is very useful in the case when we do not know F but want to talk about the substitutions in a convenient way.
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Topic 2.5

Problems
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Exercise: symbolizing bad and good puzzle**

Exercise 2.4
People are either good or bad. The good people always tell the truth and the bad people always
tell a lie. Now let us consider the following puzzle.

There are two people A and B. A said some thing, but we could not hear. B said, “A is saying
that A is bad”. What are A and B?

Encode the above puzzle into a propositional logic formula.

Commentary: The puzzle is borrowed from What is The Name of This Book? by Raymond M. Smullyan. It is difficult to encode because we also need to model internal
mental state of the participants.
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Exercise: more puzzles

Exercise 2.5
People are either good or bad. The good people always tell the truth and the bad people always
tell a lie. Now let us consider the following puzzle.

There are three people A, B, and C. A said, “All of us are bad.”. B said, “Exactly one of us is
good.”. What are A, B, and C?

Encode the above puzzle into a propositional logic formula.

Commentary: The puzzle is borrowed from What is The Name of This Book? by Raymond M. Smullyan

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 34

Let expression

We may extend the grammar of proportional logic with let expressions.

(let p = F in F )

Let-expression is a syntactic device to represent large formulas succinctly.

(let p = F in G ) represents G [F/p]

Example 2.16

(let p = (q ∧ r) in ((p ∧ s) ∨ (q ⇒ ¬p))) represents ((q ∧ r) ∧ s) ∨ (q ⇒ ¬(q ∧ r))

Exercise 2.6
Give an example in which let expressions can represent a formula in exponentially less space.
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Precedence order

Exercise 2.7
Add minimum parentheses in the following formulas such that it has unique parsing under our
precedence order

1. p ∧ q ∨ r ∧ s ∧ t ∨ u ∨ v ∧ w

2. p ⇒ ¬q ⊕ p ∨ p ∧ ¬r ⇔ s ∧ t

Commentary: Please work the above problems with and without associative preference rules. In the exams, we will make it clear.
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Custom precedence order

Exercise 2.8
Consider the following precedence order

¬ ⊕

⇔ ⇒

∧ ∨

Add minimal parentheses in the following formulas such that they have unique parsing tree

1. ¬p ⇒ q ∧ r ⇒ p ⇒ q

2. p ⇒ ¬q ⊕ p ∨ p ∧ ¬r ⇔ s ∧ t

Commentary: Please work the above problems with and without associative preference rules. In the exams, we will make it clear.
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Topic 2.6

Extra lecture slides: unique parsing
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Matching parentheses

Theorem 2.3
Every F ∈ P has matching parentheses, i.e., equal number of ‘(’ and ‘)’.

Proof.
base case:
atomic formulas have no parenthesis. Therefore, matching parenthesis

induction steps:
We assume F ,G ∈ P has matching parentheses.
Let nF and nG be the number of ‘(’ in F and G respectively.
Trivially, ¬F has matching parentheses.
For some binary symbol ◦, the number of both ‘(’ and ‘)’ in (F ◦ G ) is nF + nG + 1.

Due to the structural induction, the property holds.
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Prefix of a formula

Theorem 2.4
A proper prefix of a formula is not a formula.

Proof.
We show a proper prefix of a formula is in one of the following forms.

1. strictly more ‘(’ than ‘)’,

2. a (possibly empty) sequence of ¬.

Clearly, both the cases are not in P.

base case:
A proper prefix of atomic formulas is empty string, which is the second case ...

Exercise 2.9
Give examples of the above two cases
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Prefix of a formula II

Proof(contd.)

induction step:
Let F ,G ∈ P.

Consider proper prefix F ′ of ¬F . There are two cases.

I F ′ = ε, case 2
I F ′ = ¬F ′′, where F ′′ is a proper prefix of F . Now we again have two subcases for F ′′.

I If F ′′ is in case 1, F ′ belongs to case 1
I If F ′′ = ¬..¬, F ′ belongs to case 2

...
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Prefix of a formula III

Proof(contd.)

By induction F and G have balanced parenthesis.

Consider proper prefix H of (F ◦ G ), F ′ be prefix of F , and G ′ be prefix of G .

I If H = (F ◦ G , H belongs to case 1 because H has one extra ‘(’

I If H = (F ◦ G ′, H belongs to case 1(why?)

Similarly the following cases are handled

I H = (F◦
I H = (F

I H = (F ′

I H = (

Exercise 2.10
Complete the (why?).
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Unique parsing

Theorem 2.5
Each F ∈ P has a unique parsing tree.

Proof.
ν(F ) , number of logical connectives in F . We apply induction over ν(F ).
base case: ν(F ) = 0
F is an atomic formula, therefore has a single node parsing tree.
inductive steps: ν(F ) = n
We assume that each F ′ with ν(F ′) < n has a unique parsing tree.
case F = ¬G : Since G has a unique parsing tree, F has a unique parsing tree.
case F = (G ◦ H):

Suppose there is another formation rule such that F = (G ′ ◦′ H ′).
Since F = (G ◦ H) = (G ′ ◦′ H ′), G ◦ H) = G ′ ◦′ H ′).
Wlog, G is prefix of G ′.
Since G ,G ′ ∈ P, G can not be proper prefix of G ′. Therefore, G = G ′.
Therefore, ◦ = ◦′. Therefore, H = H ′. Therefore, only one way to unfold F .

F has a unique parsing tree.
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Parsing algorithm

Algorithm 2.1: Parser
Input: F : a string over Vars and logical connectives
Output: parse tree if F ∈ P, exception Fail otherwise

1 if F = p or F = > or F = ⊥ then return ({F}, ∅) ;
2 if F = ¬G then
3 (V ,E ) := Parser(G );
4 return (V ∪ {F},E ∪ {(F ,G )});

5 if F has matching parentheses and F = (F ′) then
6 G := smallest prefix of F ′ where non-zero parentheses match or atom after a sequence of ‘¬’s;
7 o′H := tail(F ′, len(G ));
8 if the above two match succeed then
9 (V1,E1) := Parser(G );

10 (V2,E2) := Parser(H);
11 return (V1 ∪ V2 ∪ {F},E1 ∪ E2 ∪ {(F ,G ), (F ,H)});

12 Throw Fail

Commentary: The previous proofs suggest a parsing algorithm to generate parsing tree.
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Parse Algorithm

Exercise 2.11
Show the run of Algorithm 2.1 on the following formulas.

1. ¬q ⇒ (p ⊕ r ⇔ s)

2. (¬(p ⇒ q) ∧ (r ⇒ (p ⇒ q)))
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End of Lecture 2
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