
cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 1

CS228 Logic for Computer Science 2021

Lecture 9: Resolution

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2021-01-28

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 2

Topic 9.1

Resolution

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 3

Clauses as sets and CNF formulas as set of sets

Definition 9.1 (clause redefined)

A clause is a finite set of literals {`1, . . . , `n} and interpreted as `1 ∨ .. ∨ `n.

For a clause C and a literal `, we will write ` ∪ C to denote {`} ∪ C .

Definition 9.2 (CNF formula redefined)

A CNF formula is a finite set of clauses {C1, . . . ,Cn} and interpreted as C1 ∧ .. ∧ Cn.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 4

Derivations starting from CNF

We assumed that we have a set of formulas in the lhs, which was treated as conjunction of the
formulas.

Σ ` F

The conjunction of CNF formulas is also a CNF formula.

If all formulas are CNF, we may assume Σ as a set of clauses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 5

Derivations from CNF formulas

How many rules do we need?

Answer: We need only two rules

I derive clauses from the CNF formula

Assumption
Σ ` C

C ∈ Σ

I derive new clauses using resolution

Resolution
Σ ` F ∨ G Σ ` ¬F ∨ H

Σ ` G ∨ H
(We derived the above proof rule)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 6

Resolution proof rule

Typically Σ is clear from the context, so we may not write it explicitly again and again.

Since we are deriving only clauses, we apply resolution rule as follows.

p ∨ C ¬p ∨ D

C ∨ D

I clauses p ∨ C and ¬p ∨ D are called antecedents

I variable p is called pivot

I clause C ∨ D is called resolvent

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 7

Non-unique resolvents

Between two clauses we may need to choose the pivot to apply the resolution. We may have
multiple choices applicable.

Example 9.1

The following resolutions are between two clauses, with different pivots

p ∨ q ∨ r ¬p ∨ ¬q ∨ r

q ∨ ¬q ∨ r

p ∨ q ∨ r ¬p ∨ ¬q ∨ r

p ∨ ¬p ∨ r

Exercise 9.1
a. There is something wrong with the above resolvents. What is it?
b. If there are multiple choices for resolution, should we do it at all?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 8

Resolution proof method

Resolution proof method takes a set of clauses Σ and produces a forest of clauses as a proof.

Clauses in the proof are either from Σ or consequences of previous clauses.

The aim of the proof method is to find the empty clause, which stands for inconsistency.

The proof systems that aim to derive false are called refutation proof systems.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 9

Resolution Proofs

Example 9.2

Consider F = (p ∨ q) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r ,

We will consider the context of our derivation to be Σ = {(p ∨ q), (¬p ∨ q), (¬q ∨ r),¬r}

p ∨ q ¬p ∨ q

q ¬q ∨ r

r ¬r
⊥

depth

Wait! we never derive empty formula in formal proofs. Is it allowed?
It will make sense in a minute.

Empty clause

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 10

Formal proofs and ⊥
Recall, formal proof system does not refer to ⊥. It encodes ⊥ using F ∧ ¬F for some formula F .

Observe that just before deriving empty clause we derive Σ ` r and Σ ` ¬r , for some variable r .

We translate the last resolution as the following derivation

1. Σ ` ¬r
2. Σ ` r

3. Σ ` ¬r ∧ r (∧-intro applied to 2 and 1)

Theorem 9.1
If resolution proof system can derive Σ ` ⊥, Σ is unsatisfiable.

Proof.
Since we have proven that formal derivation is sound in lecture 5, Σ is unsatisfiable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 11

Using resolution to prove statements

Let us suppose we are asked to derive Σ ` F .

We assume Σ is finite. We will relax this by the next lecture.

We will convert
∧

Σ ∧ ¬F into a set of clauses Σ′.

We apply the resolution proof method on Σ′.

If we derive ⊥ clause, Σ ` F is derivable.

Exercise 9.2
Convert the above steps into a formal derivation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 12

Example: using resolution to prove statements

Example 9.3

Let us suppose we want to show {¬(¬r ∧ (s ∨ t))} ` (s ⇒ r) is derivable.

We write negated formula ¬(¬r ∧ (s ∨ t))︸ ︷︷ ︸
∧Σ

∧¬(s ⇒ r)︸ ︷︷ ︸
¬F

We convert the above into a CNF formula.

(r ∨ ¬s) ∧ (r ∨ ¬t)︸ ︷︷ ︸
∧Σ

∧ s ∧ ¬r︸ ︷︷ ︸
¬F

The following resolution proof shows that the statement is derivable.

r ∨ ¬s s

r ¬r
⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 13

Topic 9.2

Implementation issues in resolution

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 14

Efficient implementation of a proof method

A proof method implicitly defines a non-deterministic proof search algorithm

In implementing such an algorithm, one needs to ensure that one is not doing unnecessary work.

Now we only worry about a single rule. We may be more effective in finding the proof strategy.

We will discuss some simple observations that may cut huge search spaces.

This discussion is a preview of much
detailed discussion about SAT solvers.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 15

Superset clauses are redundant

Theorem 9.2
For clauses C and D, if D ⊂ C and ⊥ can be derived using C then it can be derived using D.

If clause C is superset of clause D, then C is redundant.

Example 9.4

Consider {q,¬q ∨ r , r ,¬r}. We say ¬q ∨ r is redundant because r ⊂ ¬q ∨ r .

A proof using ¬q ∨ r :

q ¬q ∨ r

r ¬r
⊥

A modified proof using the shorter clause.

r ¬r
⊥

Exercise 9.3
Prove the above theorem.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 16

Ignore valid clauses in resolution

Definition 9.3
If a clause contains both p and ¬p then the clause is valid.

If a valid clause contributes in deriving ⊥, the descendants must participate in some resolution
step with pivot p.

The resolution step is counterproductive, i.e., resolvent is superset of some antecedent.

Example 9.5

p ∨ C ¬p ∨ p ∨ D

p ∨ C ∨ D
Resolution

Note that resolvent p ∨ C ∨ D ⊃ p ∨ C, which makes the resolution step counterproductive.

If a valid clause is generated, we can ignore it for any further derivations without loss of
completeness.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 17

Pure literals

Definition 9.4
If a literal occurs in a CNF formula and its negation does not then it is a pure literal.

Theorem 9.3
The removal of clauses containing the pure literals in a CNF preserves satisfiability.

Exercise 9.4
Prove the above theorem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 18

Unit clause propagation

If ` occurs in a resolution proof, we can remove ¬` from every clause, which is valid because of
the following resolutions.

` ¬` ∨ D

D

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 19

Prefer resolving similar clauses

Our goal is to remove all literals.

In the following we removed p and brought in D

p ∨ C ¬p ∨ D

C ∨ D
Resolution

If most of the literals in D are in C , we will have less expansion.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 20

Topic 9.3

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 21

Resolution proof

Exercise 9.5
Give resolution proofs of the following formulas.

1. p11 ∧ p21 ∧ (¬p11 ∨ ¬p21)

2. (p11 ∨ p12) ∧ (p21 ∨ p22) ∧ (p31 ∨ p32)∧ (¬p11 ∨ ¬p21)∧ (¬p21 ∨ ¬p31)∧ (¬p31 ∨ ¬p11)∧
(¬p12 ∨ ¬p22)∧ (¬p22 ∨ ¬p32)∧ (¬p32 ∨ ¬p12)

Commentary: If you can not do it by hand, try using a solver to generate the proof.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 22

Resolution: redundancy in resolution proofs

Exercise 9.6
Let us suppose we have a resolution proof deriving ⊥. We have discussed that valid clauses
should not be used for resolution. However, nobody stops us in producing them and then further
using them for the resolution. Let us suppose we have valid clauses occurring somewhere in the
middle of our proof. Give a linear (or close to linear) time algorithm in terms of the size of the
proof that removes the valid clauses from the proof.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 23

More redundancies

Exercise 9.7
Each resolution removes a single literal. Therefore, if downstream resolutions reintroduce the
literal, then purpose the earlier resolution is defeated. For example,

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

The resolution producing b is redundant in both the paths to ⊥, because ¬a was reintroduced.

Therefore, our proof may be unnecessarily large. Give an algorithm to remove the redundancies.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 24

End of Lecture 9

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Resolution
	Implementation issues in resolution
	Problems

