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Topic 16.1

Formal proofs
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Consequence to derivation

We also need the formal proof system for FOL.

Let us suppose for a (in)finite set of formulas Σ and a formula F , we have Σ |= F .

Similar to propositional logic, we will now again develop a system of “derivations”. We derive the
following statements.

Σ ` F
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Formal rules for FOL

I The old rules will continue to work

I We need new rules for..... quantifiers and equality

I Let us see how do we develop those!
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Rules for propositional logic stays!

Assumption
Σ ` F

F ∈ Σ Monotonic
Σ ` F

Σ′ ` F
Σ ⊆ Σ′ DoubleNeg

Σ ` F

Σ ` ¬¬F

∧ − intro
Σ ` F Σ ` G

Σ ` F ∧ G
∧ −ElimΣ ` F ∧ G

Σ ` F
∧ −SymmΣ ` F ∧ G

Σ ` G ∧ F

∨ − intro
Σ ` F

Σ ` F ∨ G
∨ −SymmΣ ` F ∨ G

Σ ` G ∨ F
∨ −def Σ ` F ∨ G

Σ ` ¬(¬F ∧ ¬G )
∗

∨ −Elim
Σ ` F ∨ G Σ ∪ {F} ` H Σ ∪ {G} ` H

Σ ` H

⇒ −IntroΣ ∪ {F} ` G

Σ ` F ⇒ G
⇒ −ElimΣ ` F ⇒ G Σ ` F

Σ ` G
⇒ −def Σ ` F ⇒ G

Σ ` ¬F ∨ G
∗

* Works in both directions
We are not showing the rules for⇔, ⊕, and punctuation.
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Rules for quantifiers and equality

We will introduce the following four rules.

I ∀-Intro

I ∃-Intro

I ∀-Elim

I ∃-Elim
We will also introduce rules for equality

IReflex

IEqsub
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Note

We will not show all steps due to propositional rules.

We will write ‘propositional rules applied to ...’
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Provably equivalent

Definition 16.1
If statements {F} ` G and {G} ` F hold, then we say F and G are provably equivalent.
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Topic 16.2

Introduction rules for ∀ and ∃
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∃-Intro quantifiers

If a fact is true about a term, we can introduce ∃

∃ − Intro
Σ ` F (t)

Σ ` ∃y . F (y)
y 6∈ FV (F (z)),F (z){z 7→ t} and F (z){z 7→ y} are defined

for some variable z .

Example 16.1

1. {H(x)} ` H(x) Assumption

2. {H(x)} ` ∃y . H(y) ∃-Intro applied to 1

Recall some substitutions are not defined. The
condition is often not explicitly written. By
writing F (y) and F (t), we can imply that the
substitutions are defined.
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Bad derivations that violate the side condition y 6∈ FV (F (z))

Example 16.2

1. {x = 1, y = 2} ` x 6= y Premise

2. {x = 1, y = 2} ` ∃y . y 6= y ∃-Intro applied to 17

because y ∈ FV (z 6= y).

Exercise 16.1

1. Σ ` F (f (x), y) Premise

2. Σ ` ∃y .F (y , y) ∃-Intro applied to 17

Give F (z) that shows y ∈ FV (F (z)).
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Bad derivation that violate the side condition ‘F (z){z 7→ y} is defined’

Example 16.3

1. {∃y . c 6= y} ` ∃y . c 6= y Assumption

2. {∃y . c 6= y} ` ∃y . ∃y . y 6= y ∃-Intro applied to 17

because (∃y . z 6= y){z 7→ y} is not defined.

The following derivation is correct even if y is quantified somewhere in the formula.

Exercise 16.2

1. Σ ` ∃w . (c 6= w ∧ ∀y .P(y)) Assumption

2. Σ ` ∃y . ∃w . (y 6= w ∧ ∀y .P(y)) ∃-Intro applied to 13

Give F (z) that shows all conditions are satisfied.

Commentary: In the first example, y being quantified is not solely responsible. The problem is that z is occurring in a scope where where y is quantified.
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Bad derivations that violate the side condition ‘F (z){z 7→ t} is defined’

Example 16.4

1. Σ ` ∀x . f (x) = x Premise

2. Σ ` ∃y∀x . y = x ∃-Intro applied to 17

because (∀x . z = x){z 7→ f (x)} is not defined.

We get F (t), we need to identify F (z).

2 states singleton domain,
which is not implied by 1

Commentary: z is a placeholder. F (z) neither occurs in antecedents nor in consequent of the proof rule. Therefore, it is our choice (the person who is writing the proof)
to choose z and F (z). If we choose a z that is already around, then we may potentially run into a situation where some actions are not allowed. Therefore, it is cleaner
to assume z is not being used for any other purpose in the context. Therefore, We should always choose such that z is not quantified in F (z). If we choose F (z) poorly,
we may not be able to apply the rule.
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Good derivations that may look bad

Not all t’s need to be replaced.

Example 16.5

1. ∅ ` ∃x2. f (g(c), x2) = f (g(c), c) Premise

2. ∅ ` ∃x1, x2. f (x1, x2) = f (g(c), c) ∃-Intro applied to 13

F (z) = ∃x2. f (z , x2) = f (g(c), c) satisfies all the side conditions.

One may complain that not all
copies of g(c) were replaced.
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How to intro ∀?

We have seen the following proof in our life.

I Consider a fresh name x to represent a number.

I We prove Fact(x)

I We conclude ∀x .Fact(x).
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∀-Intro for variables

If something is true about a variable that is not referred elsewhere.

Then it must be true for any value in the universe.

∀ − Intro
Σ ` F (x)

Σ ` ∀y . F (y)
y 6∈ FV (F (z)), x , z ∈ Vars, and x 6∈ FV (Σ ∪ {F (z)}).

Example 16.6

1. {H(x)} ` H(x) Assumption

2. {H(x)} ` ∀y . H(y) ∀-Intro applied to 17

Since x is referred in left hand side, the above derivation is wrong.

Exercise 16.3
Why FV (F (z)) must not contain x?

No reference condition

Commentary: The rule has implicit side condition that F (z){z 7→ x} and F (z){z 7→ y} are defined.
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∀-Intro (for constants)

Constants may play the similar role

∀ − Intro
Σ ` F (c)

Σ ` ∀y . F (y)
y 6∈ FV (F (z)), c is not referred in Σ ∪ {F (z)}, and c/0 ∈ F,

for some variable z .

Example 16.7

1. Σ ` H(c) Premise and c is not referred in Σ

2. Σ ` ∀y . H(y) ∀-Intro applied to 1

Commentary: The rule has implicit side condition that F (z){z 7→ x} and F (z){z 7→ y} are defined.
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Example: Bad ∀-Intro

Example 16.8

Consider the following derivation where we used a term for ∀-Intro.

1. ∅ ` ∃y . f (y) 6= y ∨ f (c) = c Premise

2. ∅ ` ∀x . (∃y . f (y) 6= y ∨ x = c) ∀-Intro applied to 17

Our F (z) = ∃y . f (y) 6= y ∨ z = c.

f (c) does not occur in F (z).

The formula in 1 is a valid formula and the formula in 2 is not a valid formula.
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Topic 16.3

Elimination rules for ∀ and ∃
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Universal instantiation

If some thing is always true, we should be able to make it true on any value.

∀ −Elim
Σ ` ∀x .F (x)

Σ ` F (t)

Commentary: The above rule has an implicit side condition that F{x 7→ t} is defined.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 21

Our first FOL proof : ∀ implies ∃

Theorem 16.1
If we have Σ ` ∀x .F (x), we can derive Σ ` ∃x .F (x).

Proof.

1. Σ ` ∀x .F (x) Premise

2. Σ ` F (x) ∀-Elim applied to 1

3. Σ ` ∃x .F (x) ∃-Intro applied to 2

Exercise 16.4
Show Σ ` ∀x .(F (x) ∧ G (x)) and Σ ` ∀x .F (x) ∧ ∀x .G (x) are provably equivalent.

the proof does not work
in the reverse direction
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One more example: working with quantifiers

Example 16.9

Prove ∅ ` (∀x . (P(x) ∨ Q(x))⇒ ∃x .P(x) ∨ ∀x .Q(x)). Here is the derivation.

1. {∀x . (P(x) ∨ Q(x)),¬∃x .P(x)} ` ∀x . (P(x) ∨ Q(x)) Assumption

2. {∀x . (P(x) ∨ Q(x)),¬∃x .P(x)} ` P(y) ∨ Q(y) ∀-Elim applied to 1

3. {∀x . (P(x) ∨ Q(x)),¬∃x .P(x)} ` ¬∃x .P(x) Assumption

4. {∀x . (P(x) ∨ Q(x)),¬∃x .P(x),P(y)} ` P(y) Assumption

5. {∀x . (P(x) ∨ Q(x)),¬∃x .P(x),P(y)} ` ∃x .P(x) ∃-Intro applied to 4

6. {∀x . (P(x) ∨ Q(x)),¬∃x .P(x)} ` Q(y) propositional rules applied to 2, 3, and 5

7. {∀x . (P(x) ∨ Q(x)),¬∃x .P(x)} ` ∀x .Q(x) ∀-Intro applied to 6
..... rest is propositional reasoning

Exercise 16.5
Fill the gaps in the step 6 and the tail of the proof.
Commentary: To understand the interplay of propositional reasoning and quantifiers, please solve the above exercise.
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How to understand substitutions in the proof rules?

In proof rules, there is a leaving term t and an arriving term s, and there is F (z).

Antecedent has F (t) and consequence has F (s). For example,

F (z) = P(z) ∧ ∀z .Q(z) ∧ (∀w .R(w , u)︸ ︷︷ ︸
No worry occurrences

∨∃y .R(z , y))

We have the following four possibilities.

I z may occur free under no scope

I z is quantified in a scope

I free z does not occur in scope of a quantifier w

I free z occurs in scope of a quantifier y (troubling case)

Only the last case causes a restriction that t and s cannot have y .

Commentary: A good way to think is that the name of
a quantified variable is not important to outside world,
except when we try to substitute a free variable in its
scope by a term, which may have a variable with the
same name. This name conflict issue is a mute point.
As long as we follow some naming discipline, which
ensures that free variables in a system and quantified
variables do not ’clash’. We need not worry. This is
often done in programming languages. For example,
import in python prefixes every imported name and
c++ allows you to declare namespaces.
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Where is ∃ instantiation?

If there is something, should we not be able to choose it? Not an arbitrary choice.

Example 16.10

Let us suppose we want to prove, “If there is a door in the building, I can steal diamonds.”

Intuitively, we do...

1. Assume door x is there

2.
...

3. details of robbery

4.
...

5. I steal diamonds.

6. We say, therefore the theorem holds.

Formally, we need to do the following.

1. Σ ∪ {D(x)} ` D(x) Assumption

2.
...

3. symbolic details of robbery

4.
...

5. Σ ∪ {D(x)} ` Stolen ...

6. Σ ` D(x)⇒ Stolen ⇒-Intro applied to 5

7. Σ ` ∃x .D(x)⇒ Stolen What rule?

∃ can not behave like ∀.

Commentary: We expect the Stolen formula does not have x free. Therefore, the above reasoning may work as ∃ instantiation.
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Instantiation rule for exists

The following rule plays the role of ∃ instantiation.

∃ −Elim
Σ ` F (x)⇒ G

Σ ` ∃y .F (y)⇒ G
x /∈ FV (Σ ∪ {G ,F (z)}), y /∈ FV (F (z))

Commentary: Note that y and x can be same variables. We need to make a distinction between incoming variable x and outgoing variable y .
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Example: using ∃-Elim

Example 16.11

The following derivation proves ∅ ` ∃x .(A(x) ∧ B(x))⇒ ∃x .A(x)

1. {A(x) ∧ B(x)} ` A(x) ∧ B(x) Assumption

2. {A(x) ∧ B(x)} ` A(x) ∧-Elim applied to 1

3. {A(x) ∧ B(x)} ` ∃x . A(x) ∃-Intro applied to 2

4. ∅ ` A(x) ∧ B(x)⇒ ∃x . A(x) ⇒-Intro applied to 3

5. ∅ ` ∃x .(A(x) ∧ B(x))⇒ ∃x . A(x) ∃-Elim applied to 4

Exercise 16.6
Show Σ ` ∃x .(F (x) ∨ G (x)), and Σ ` ∃x .F (x) ∨ ∃x .G (x) are provably equivalent.

We cannot instantiate ∃ out of the blue. We assume instantiated formula (step 1), prove
the goal (step 3), and produce an implication (step 4), which is followed by ∃-Elim.
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Disastrous derivations

Example 16.12

Here are two derivations that apply proof rules incorrectly and derive a bad statement.

1. {A(x)} ` A(x) Assumption

2. {A(x)} ` ∀x . A(x) ∀-Intro applied to 17

3. ∅ ` A(x)⇒ ∀x . A(x) ⇒-Intro applied to 2

4. ∅ ` ∃x .A(x)⇒ ∀x . A(x) ∃-Elim applied 3

1. {∃x .A(x)} ` ∃x .A(x) Assumption

2. {∃x .A(x)} ` A(x) ∃-Elim applied 17

3. {∃x .A(x)} ` ∀x . A(x) ∀-Intro applied to 2

4. ∅ ` ∃x .A(x)⇒ ∀x . A(x) ⇒-Intro applied to 3
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Topic 16.4

Rules for equality
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Equality rules

For equality

Reflex
Σ ` t = t

EqSub
Σ ` F (t) Σ ` t = t ′

Σ ` F (t ′)

Exercise 16.7
Do we need side condition for rule EqSub?

Commentary: Again applying EqSub gets trick. You need to identify F (z) for some fresh z like other rules.
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Example : example for equality

Example 16.13

Let us prove ∅ ` ∀x , y . (x 6= y ∨ f (x) = f (y))

1. {x = y} ` x = y Assumption

2. {x = y} ` f (x) = f (x) Reflex

3. {x = y} ` f (x) = f (y) EqSub applied to 1 and 2

4. {} ` ¬x = y ∨ f (x) = f (y) propositional rules applied to 3

5. {} ` ∀x , y . (¬x = y ∨ f (x) = f (y)) ∀-Intro applied twice to 4

Exercise 16.8
Write F (z)s in the application of ∀-Intro.
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Deriving symmetry for equality

Theorem 16.2
If we have Σ ` s = t, we can derive Σ ` t = s

Proof.

1. Σ ` s = t Premise

2. Σ ` s = s Reflex

3. Σ ` t = s EqSub applied to 2 and 1 where F (z) = (z = s)

Therefore, we declare the following a derived proof rule.

EqSymm
Σ ` s = t

Σ ` t = s
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Example : finding evidence of ∃ is hard

There are magic terms that can provide evidence of ∃. Here is an extreme example.

Example 16.14

Consider ∅ ` ∃x4, x3, x2, x1. f (x1, x3, x2) = f (g(x2), j(x4), h(x3, a))
Let us construct a proof for the above as follows

1. ∅ ` f (g(h(j(c), a)), j(c), h(j(c), a)) = f (g(h(j(c), a)), j(c), h(j(c), a)) Reflex

2. ∅ ` ∃x1.f (x1, j(c), h(j(c), a)) = f (g(h(j(c), a)), j(c), h(j(c), a)) ∃-Intro applied to 1

3. ∅ ` ∃x2.∃x1.f (x1, j(c), x2) = f (g(x2), j(c), h(j(c), a)) ∃-Intro applied to 2

4. ∅ ` ∃x3.∃x2.∃x1.f (x1, x3, x2) = f (g(x2), j(c), h(x3, a)) ∃-Intro applied to 3

5. ∅ ` ∃x4.∃x3.∃x2.∃x1.f (x1, x3, x2) = f (g(x2), j(x4), h(x3, a)) ∃-Intro applied to 4
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Topic 16.5

Problems
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Exercise: extended ∀-elim rule

Exercise 16.9
Show that the following derived rule is sound

∀ −Elim
Σ ` ∀x1...xn.F

Σ ` Fσ
F is quantifier-free

Exercise 16.10
Show that the following derived rule is sound

∀ − Subst
Σ ` ∀x1...xn.F

Σ ` ∀Vars(Fσ). Fσ
F is quantifier-free and FV (Σ) = ∅
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Exercise : derived rules for equality

Exercise 16.11
Prove the following derived rules

EqTrans
Σ ` s = t Σ ` t = r

Σ ` s = r
Paramodulation

Σ ` s = t

Σ ` r(s) = r(t)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 36

Practice formal proofs

Exercise 16.12
Prove the following statements

1. ∅ ` ∀x .∃y .∀z .∃w .(R(x , y) ∨ ¬R(w , z))

2. ∅ ` ∀x .∃y .x = y

3. ∅ ` ∀x .∀y .((x = y ∧ f (y) = g(y))⇒ (h(f (x)) = h(g(y))))

4. ∅ ` ∃x1, x2, x3.f (g(x1), x2) = f (x3, x1)
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Proofs on set theory**

Exercise 16.13
Consider the following axioms of set theory

Σ = { ∀x , y , z . (z ∈ x ⇔ z ∈ y)⇒ x = y ,
∀x , y . (x ⊆ y ⇔ ∀z . (z ∈ x ⇒ z ∈ y)),
∀x , y , z . (z ∈ x − y ⇔ (z ∈ x ∧ z 6∈ y))}.

Prove the following
Σ ` ∀x , y . x ⊆ y ⇒ ∃z .(y − z ≈ x)
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Bad orders

Exercise 16.14
Prove that the following formulas are mutually unsatisfiable.

I ∀x .¬E (x , x)

I ∀x , y .(E (x , y) ∧ E (y , x)⇒ x = y)

I ∀x , y , z .(E (x , y) ∧ E (y , z)⇒ ¬E (x , z))

I ∀x , y , z .(E (x , y) ∧ E (x , z)⇒ E (y , x) ∨ E (z , y))

I ∃x , y .E (x , y)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 39

Exercise: different proof systems

Exercise 16.15
Let us suppose we remove ∀ −Elim from our FOL proof system and we add the following proof
rule in our proof system.

∃ −Def
Σ ` ∀x .F (x)

Σ ` ¬∃x . ¬F (x)

Show that we can drive ∀ −Elim from the modified proof system. Give detailed derivation
without skipping any step. Only formal derivations will be accepted.
Commentary: Solution:

1. Σ ` ∀x.F (x) Premise

2. Σ ∪ {¬F (t)} ` ∀x.F (x) Monotonic applied to 1

3. Σ ∪ {¬F (t)} ` ¬∃x.¬F (x) ∃-Def applied to 1

4. Σ ∪ {¬F (t)} ` ¬F (t) Assumption

5. Σ ∪ {¬F (t)} ` ∃x.¬F (x) ∃-Intro applied to 4

6. Σ ` ¬¬F (t) ByContra applied to 3 and 5

7. Σ ` F (t) RevDoubleNeg applied to 6
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Topic 16.6

Extra slides: Soundness
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Soundness of the proof system

We need to show that the proof rules derive only valid statements.

We only need to prove the soundness of the new proof rules in addition to the propositional rule.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2021 Instructor: Ashutosh Gupta IITB, India 42

Substitution

Theorem 16.3
For a variable z , a term t, and a formula F (z). If mν(z) = mν(t) and F (t) is defined, then

m, ν |= F (z) iff m, ν |= F (t)

Proof.
Not so trivial proof by structural induction.

Exercise 16.16
Write down the above proof. Hint: You need to case split when we quantify over z or some other variable.
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Soundness: ∃ − Intro is sound

Theorem 16.4
The following rule is sound.

∃ − Intro
Σ ` F (t)

Σ ` ∃y . F (y)
y 6∈ FV (F (z)),F (z){z 7→ t} and F (z){z 7→ y} are defined

for some variable z .

Proof.
1. Let us assume m, ν |= Σ.

2. Due to the antecedent, m, ν |= F (t). Let mν(t) = v .

3. Since z 6∈ FV (F (t)), m, ν[z 7→ v ] |= F (t).

4. Since F (z){z 7→ t} is defined, m, ν[z 7→ v ] |= F (z).(why?)

5. Since y 6∈ FV (F (z)), m, ν[z 7→ v , y 7→ v ] |= F (z).

6. Since F (z){z 7→ y} is defined, m, ν[z 7→ v , y 7→ v ] |= F (y).

7. Therefore, m, ν[z 7→ v ] |= ∃y . F (y).

8. Since z 6∈ FV (F (t)), m, ν |= ∃y . F (y)

Commentary: All soundness proofs are repeated ap-
plications of similar arguments. However, in each rule
the side conditions play their role differently. To un-
derstand the side conditions, please look into all the
soundness arguments in the extra slides of this lecture.
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Soundness: ∀ − Intro is sound

Theorem 16.5
The following rule is sound.

∀ − Intro
Σ ` F (x)

Σ ` ∀y . F (y)
y 6∈ FV (F (z)), x , z ∈ Vars, and x 6∈ FV (Σ ∪ {F (z)}).

Proof.
I Let us assume m, ν |= Σ. Let v be some value in the domain of model m.

I Since x /∈ FV (Σ), m, ν[x 7→ v ] |= Σ. Due to the antecedent, m, ν[x 7→ v ] |= F (x).

I Since z /∈ FV (F (x)), m, ν[x 7→ v , z 7→ v ] |= F (x).

I Since F (z){z 7→ x} is defined, m, ν[x 7→ v , z 7→ v ] |= F (z)(why?).

I Since x /∈ FV (F (z)), m, ν[z 7→ v ] |= F (z).

I Since y 6∈ FV (F (z)), m, ν[z 7→ v , y 7→ v ] |= F (z).

I Since F (z){z 7→ y} is defined, m, ν[x 7→ v , z 7→ v ] |= F (y)(why?).

I Since z /∈ FV (F (y))(why?), m, ν[y 7→ v ] |= F (y).

I Since v is an arbitrary value, we have m, ν |= ∀y . F (y).
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Soundness: ∀ −Elim is sound

Theorem 16.6
The following rule is sound.

∀ −Elim
Σ ` ∀x .F (x)

Σ ` F (t)
Proof.

1. Let t ′ = t{x 7→ z}, where z is a fresh variable.

2. Since F{x 7→ t} is defined, F{x 7→ t ′} is defined and F (t ′){z 7→ x} is defined.

3. Let us assume m, ν |= Σ. Let ν ′ , ν[z 7→ ν(x)]. Since z 6∈ FV (Σ), m, ν ′ |= Σ.

4. Due to the antecedent, m, ν ′ |= ∀x . F (x).

5. Let v , mν′(t ′). Since x /∈ Vars(t ′), v = mν′[x 7→v ](t ′).

6. Due to ∀ semantics, m, ν ′[x 7→ v ] |= F (x).

7. Since F{x 7→ t ′} is defined , m, ν ′[x 7→ v ] |= F (t ′).

8. Since x /∈ FV (F (t ′)), m, ν ′ |= F (t ′).

9. Therefore, m, ν |= F (t).(why?)

Commentary: If x does not occur in t, the proof is
simpler. However, it occurs very often in practice.
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Soundness: ∃ −Elim is sound

Theorem 16.7
The following rule is sound.

∃ −Elim
Σ ` F (x)⇒ G

Σ ` ∃y .F (y)⇒ G
x /∈ FV (Σ ∪ {G ,F (z)}), y /∈ FV (F (z))

Proof.
I Let us assume m, ν |= Σ and m, ν |= ∃y .F (y).

I There is v in domain of m such that m, ν[y 7→ v ] |= F (y).

I Since x , y /∈ FV (F (z)), and F (x) and F (y) substitutions are defined, m, ν[x 7→ v ] |= F (x).

I Since x /∈ FV (Σ), m, ν[x 7→ v ] |= Σ.

I Due to the antecedent, m, ν[x 7→ v ] |= F (x)⇒ G .

I Therefore, m, ν[x 7→ v ] |= G .

I Since x /∈ FV (G ), m, ν |= G .
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End of Lecture 16
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