
cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 1

CS 433 Automated Reasoning 2022

Lecture 13: Implementing QF EUF

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2022-11-20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 2

Topic 13.1

Union find - an algorithm for equivalences

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 3

Union find

Equivalence classes are usually implemented using union-find data structure

▶ each class is represented using a tree over its member terms

▶ root of the tree represents the class

▶ getClass() returns root of the tree, which involves traversing to the root

▶ mergeClasses() simply adds the root of smaller tree as a child of the root of larger class

Efficient data-structure: for n pushes, run time is O(n log n)

Exercise 13.1
Prove the above complexity

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 4

Example: union-find

Example 13.1

Consider: t1 = t8︸ ︷︷ ︸
1

∧ t7 = t2︸ ︷︷ ︸
2

∧ t7 = t1︸ ︷︷ ︸
3

∧ t6 = t7︸ ︷︷ ︸
4

∧ t9 = t3︸ ︷︷ ︸
5

∧ t5 = t4︸ ︷︷ ︸
6

∧ t4 = t3︸ ︷︷ ︸
7

∧ t7 = t5︸ ︷︷ ︸
8

∧ t1 ̸= t4︸ ︷︷ ︸
9

t8

t1

1

t2

t7

2

3
t6

4

t3

t9

5

t4

t5

6

7

8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 5

unsatCore using union find

▶ generate proof of unsatisfiablity using union find

▶ collect leaves of the proof, which can serve as an unsat core

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 6

Proof generation in union-find

Proof generation from union find data structure for an unsat input.
The proof is constructed bottom up.

1. There must be a dis-equality s ̸= v that was violated.
We need to find the proof for s = v .

2. Find the latest edge in the path between s and v . Let us say it is due to input literal t = u.

s .. .. v
t = u

Recursively, find the proof of s = t and u = v .

We stitch the proofs as follows

...

s = t t = u

...

u = v
s = v

For improved algorithm: R. Nieuwenhuis and A. Oliveras. Proof-producing congruence closure. RTA’05, LNCS 3467

Commentary: We may need to apply symmetry rule to get the equality in right order.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 7

Example: union-find proof generation

Example 13.2

Consider: t1 = t8︸ ︷︷ ︸
1

∧ t7 = t2︸ ︷︷ ︸
2

∧ t7 = t1︸ ︷︷ ︸
3

∧ t6 = t7︸ ︷︷ ︸
4

∧ t9 = t3︸ ︷︷ ︸
5

∧ t5 = t4︸ ︷︷ ︸
6

∧ t4 = t3︸ ︷︷ ︸
7

∧ t7 = t5︸ ︷︷ ︸
8

∧ t1 ̸= t4︸ ︷︷ ︸
9

t8

t1

1

t2

t7

2

3
t6

4

t3

t9

5

t4

t5

6

7

8

t1 ̸= t4

t7 = t1
t1 = t7 t7 = t5 t5 = t4

t1 = t4
⊥

1. t1 ̸= t4 is violated.

2. 8 is the latest edge in the path between t1 and t4

3. 8 is due to t7 = t5

4. Look for proof of t1 = t7 and t5 = t4

5. 3 is the latest edge between t1 and t7, which is due to t7 = t1.

6. Similarly, t5 = t4 is edge 6

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 8

Example: extending to congruence

Example 13.3

Run union find on f 5(a) = a︸ ︷︷ ︸
1

∧ f 3(a) = a︸ ︷︷ ︸
2

∧ f (a) ̸= a︸ ︷︷ ︸
3

Term parent relation

f 5(a) f 4(a) f 3(a) f 2(a) f 1(a) f 0(a)

1

2

3

cong(2)
cong(cong(2))

how?

Exercise 13.2
Extract proof from the above graph?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 9

Topic 13.2

Union-find in the context of SMT solver

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 10

Union-find in the context of SMT solver

SMT solver design causes frequent calls to getClass(), which is not constant time.

To make it constant time, we may add another field in each node that points to the root.

▶ Increases the cost of merge: needs to update the root field in each node

▶ Traversal in the tree needs a stack

Why not use a simpler data structure?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 11

Union-find using circular linked lists

▶ We may represent the equivalence class using circular linked lists

▶ each node has a field to indicate the root, therefore getClass() is constant time

▶ merging two circular linked lists via field next

s

t

...

u

v

...

s.next, v .next := v .next, s.next

Exercise 13.3
a. How to split circular linked lists at two given nodes?
b. Compare code for traversing circular linked list and traversal of a tree.Commentary: Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52 (2005) (p386-389,p420-433)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 12

Fields for equivalence classes

Therefore, we need the following fields in nodes to implement equivalence classes over the nodes

▶ next (pointers for the circular linked list)

▶ root (every node points to the root in the list)

▶ size (for choosing next root)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 13

Merge/unmerge classes

▶ On class merge: the two circular linked lists with roots x and y are merged.

1. Wlog, let us suppose x .size ≥ y .size.
2. Update root field in “looser” list:

y .root := x ; for(z := y .next; z ̸= y ; z := z .next) z .root := x ;.
3. Update size field of “winner”:

x .size := x .size + y .size
4. the looser root y is recorded in a list for possible unmerge

▶ On backtracking, we iterate over the loosers record in the reverse order and unmerge

1. Let node x be the current top looser root.
2. r := getClass(x); r .next, x .next := x .next, r .next.
3. make x root of the part that contains x .
4. Update size fields accordingly.(how?)

Exercise 13.4
In the above code, we have not written code for updating size fields. Complete the code.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 14

Topic 13.3

Implementing congruence-closure

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 15

Congruence-closure

▶ We need to implement congruence-closure with equality reasoning.

▶ A uniform data structure to represent function with arbitrary parameters

▶ Quick way to find application of congruence.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 16

Uniform representation of terms.

Terms as binary DAGs

▶ Term has two children: Left child is the top symbol and right child is the argument list

▶ Argument list has two children: left child is the first term and right child is the tail list

Example 13.4

g(f (x), y , x)

g [f (x), y , x ]

[y , x ]

[x ]

[]

f (x)

y

x

f

Exercise 13.5
Prove: each class consists of nodes that are either left children or right children.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 17

Equivance classes over terms and lists

We compute equivalence of terms as well as term lists.

We also maintain the following equivalence classes.

1. LeftEquiv: nodes whose left children are in same class

2. RightEquiv: nodes whose right children are in same class

3. BothEquiv: nodes whose left children are in same class and right children are in same class

The above three are equivalence relations. We implement them similarly using circular linked lists
by adding fields in the node for each of the relations.

Exercise 13.6
Write all the fields in the node for the above equivalence relations?
Commentary: LeftEquiv and RightEquiv relations are again maintained as circular linked lists. Similarly (un)merged trigger by (un)merger of their children. The looser root
needs to keep sufficient information for unmerge. BothEquiv is stored as tree-like union-find data structure.(why?)
Read: Detlefs et.al. Simplify: a theorem prover for program checking, 2005.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 18

Understanding LeftEquiv, RightEquiv, and BothEquiv

Let us consider the case of LeftEquiv

LeftEquiv

BothEquiv...

Each LeftEquiv class contains partitions of nodes that form BothEquiv classes.

Similarly, RightEquiv classes contain BothEquiv partitions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 19

Applying congruence upon merger

1. Classes A and B are being merged. Assume
nodes in them are left children of their parents.

2. Get parent LeftEquiv classes Ap and Bp

3. Let A1, ...,An be the congruent partitions of Ap

4. Let B1, ...,Bm be the congruent partitions of Bp

5. Merge Ap and Bp

6. if Ai and Bj are in same RightEquiv class
▶ Merge BothEquiv Ai and Bj

▶ Congruence found : merge classes containing Ai

and Bj class A class Bmerge

Ap

left children

Bp

left children

A1

...

An

B1

...

Bmmerge

merge Ai ,Bj

Commentary: At step 2, A and B were left children of their respective parents. We may also have a case where A and B were right children.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 20

Example: congruence data structure

Example 13.5
Consider f 5(a) = a ∧ f 3(a) = a

▶ Term graph is denoted by dotted edges

▶ Initially,
{f (a), f 2(a), f 3(a), f 4(a), f 5(a)} ∈ LeftEquiv (why?)

{[a], [f (a)], [f 2(a)], [f 3(a)], [f 4(a)]} ∈ RightEquiv (why?)

▶ Black edges are equivalence classes

▶ [f 3(a)] and [a] form an LeftEquiv class because their
left children are equivalent

▶ Since [f 3(a)] and [a] are in same RightEquiv , they also
form an BothEquiv class

▶ Therefore, we add [f 3(a)] = [a]

Exercise 13.7
Complete the run

f 5(a)

f

f 4(a)

[f 4(a)]

[]

f 3(a)

[f 3(a)]

f 2(a)

[f 2(a)]

f (a)

[f (a)]

a

[a]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 21

Congruence table to avoid quadratic enumeration

Enumerating Ai and Bj at step 6 is expensive. We may save some time using a hash map.

We maintain a hash map CongTable : LeftEquiv × RightEquiv ↪→ BothEquiv , which records if a
node belongs to X ∈ LeftEquiv and Y ∈ RightEquiv , then it must belong to CongTable(X ,Y ).

Using CongTable,

▶ Wlog, let Ap be smaller than Bp.

▶ For each Ai , let A
r
i ∈ RightEquiv be such that Ai ⊆ Ar

i .

▶ If Bj = CongTable(Bp,A
r
i ), then we merge Ai and Bj .

Maintaining CongTable: we need to update CongTable on each merge and unmerge operations.

Using Hash table, we need
to enumerate only one set.

Commentary: For the details for maintaining CongTable read: Detlefs et.al. Simplify: a theorem prover for program checking, 2005. Section 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 22

Topic 13.4

Handling disequality

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 23

Data structure for disequalities

For each equivalence class, we maintain a set of the other unmergable classes

▶ the set cannot be maintained as a circular linked lists over nodes by adding new field

▶ The set is maintained in a list for which we need extra memory

Exercise 13.8
If we have input that says some n > 2 terms are distinct,

(distinct t1 ... tn)

How many entries we need in the unmergable classes lists?
Can we do it better?Hint: use bitvectors for each distinct

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 24

Topic 13.5

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 25

Exercise

Exercise 13.9
Apply union-find on the following equalities and draw the resulting tree.

t6 = t2︸ ︷︷ ︸
1

∧ t7 = t4︸ ︷︷ ︸
2

∧ t8 = t5︸ ︷︷ ︸
3

∧ t3 = t7︸ ︷︷ ︸
4

∧ t4 = t3︸ ︷︷ ︸
5

∧ t5 = t6︸ ︷︷ ︸
6

∧ t3 = t8︸ ︷︷ ︸
7

Each equality has been assigned a number. Please label the edges of the tree with the numbers.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 26

Problem

Exercise 13.10
Prove/Disprove that the following formula is unsat.

(f 4(a) = a ∨ f 6(a) = a) ∧ f 3(a) = a ∧ f (a) ̸= a

If unsat give a proof otherwise give a satisfying assignment.

Please show a run of DPLL(T ) and union-find on the above example.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 27

End of Lecture 13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Union find - an algorithm for equivalences
	Union-find in the context of SMT solver
	Implementing congruence-closure
	Handling disequality
	Problems

