
cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 1

CS 433 Automated Reasoning 2022

Lecture 22: Maxsat - an application of SAT oracle

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2022-10-27

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 2

Oracle

In computer science, oracle is an algorithm that can solve a hard problem.

Often complexity or security arguments depend on the availability or absence of such oracles.

SAT solver is the quintessential oracle used for many harder problems, e.g., maxsat.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 3

Topic 22.1

Maxsat

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 4

Maxsat

Input:

▶ A CNF fromula F
▶ A weight function w : F → N

▶ maps each clause in F to a number

Output:

Find a model m such that the following sum is maximum.∑
C∈F

w(C)m(C)

Commentary: m(C) is 1 if m |= C , otherwise 0.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 5

Partial maxsat

Input:

▶ A CNF fromula Hard ∧ Soft

▶ A weight function w : Soft → N

Output:

Find a model m such that m |= Hard and the following sum is maximum.∑
C∈Soft

w(C)m(C)

Many interesting optimization problems can be encoded into maxsat problem.

There may be no solutions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 6

Example: shortest path on a graph

Example 22.1

Consider an undirected graph (V ,E). Find shortest path between two nodes s, g ∈ V

▶ We choose a Boolean variable pv for each vertex v , indicating if v is visited.
▶ Hard constraints

▶ ps ∧ pg (source and goal must be visited)
▶ ps ⇒

∑
v ′∈E(s) pv ′ = 1 (source has exactly one successor)

▶
∧

v∈V−{s,g}

(pv ⇒
∑

v ′∈E(v)

pv ′ = 2) (one neighbour to enter and the other to leave)

▶ pg ⇒
∑

v ′∈E(g) = 1 (goal has exactly one predecessor)

▶ Soft constraints
∧

v∈V ¬pv

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 7

Topic 22.2

Methods for maxsat

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 8

Methods for maxsat

There has been many proposed methods.

▶ Branch-and-bound

▶ Integer arithmetic solver based (IP)

▶ SAT solvers based algorithms

▶ Implicit hitting set algorithms (IP/Hybrid)

We will focus on only one class of them.

For further details: https://www.cs.helsinki.fi/group/coreo/aaai16-tutorial/aaai16-maxsat-tutorial.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://www.cs.helsinki.fi/group/coreo/aaai16-tutorial/aaai16-maxsat-tutorial.pdf

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 9

Unweighted Partial maxsat

In this lecture, we will only discuss the unweighted maxsat problem

Input:

▶ A CNF fromula Hard ∧ Soft

Output:

Find a model m such that m |= Hard and the following sum is maximum.∑
C∈Soft

m(C)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 10

How a SAT solver based method works?

By setup initially, ̸|= Soft ∧ Hard .
Iteratively, relax Soft constraints until |= Soft ∧ Hard .

1. If ̸|= Hard , return no maxsat solution

2. If m |= Soft ∧ Hard , return found optimal m

3. Relax Soft so that more clauses allowed to be false in the original Soft

4. go to 2.

We will cover a few instances of the above design

▶ Iterative linear search

▶ Core based search

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 11

Blocking variables to allow false soft clauses
maxsat methods often use blocking variables to relax (block) soft clauses.

▶ In a soft clause x1 ∨ ∨ xk we insert a new variable b

b ∨ x1 ∨ ... ∨ xk

b is fresh with respect to the formula.
▶ If b = 0 the soft clause has to be satisfied.
▶ If b = 1 the extended clause is already satisfied and the soft clause is blocked, i.e., no

requirement to satisfy the soft clause.

Example 22.2

Recall the shortest path soft clauses
∧

v∈V ¬pv

Consider a clause ¬px for some node x ∈ V .

Corresponding clause with blocking variable (¬px ∨ bx)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 12

Iterative linear search

1. Insert a blocking variable bc in every c ∈ Soft.

2. k := 0

3. If |= Hard ∧ Soft ∧ CNF (
∑

bc ≤ k), return k

4. k := k + 1.

5. goto 3.

Exercise 22.1
Can we improve on the search of k?

at most k soft clauses
can be blocked

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 13

Iterative linear search in the other direction

SAT → UNSAT

1. Insert a blocking variable bc in every c ∈ Soft.

2. Get m such that m |= Hard

3. k := #(of voilated clauses in Soft by m)-1

4. If there is a better m |= Hard ∧ Soft ∧ CNF (
∑

bc ≤ k), goto 3

5. return k .

Exercise 22.2
Can we improve on the search of k like the previous algorithm?

after every iteration m violates
fewer clauses in Soft

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 14

Core based maxsat solving

In the last algorithm, we could guide our search using the model.

In case of unsatisfiability there is no guidance.

Definition 22.1
An unsat core of an maxsat problem Hard ∧ Soft is a subset F ⊆ Soft such that Hard ∧ F is
unsatisfiable.

Modern solvers can return an unsat cores in the case of unsatisfiability.

We usually expect F to be
significantly smaller than Soft.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 15

Iterative linear search with unsat core

1. k := 0,BV = {}
2. If |= Hard ∧ Soft ∧ CNF (

∑
bc∈BV bc ≤ k), return k

3. Otherwise, get unsat core K of Hard ∧ Soft ∧ CNF (
∑

bc∈BV bc ≤ k)

4. For each c ∈ K that has no blocking variable.

4.1 Insert a blocking variable bc in c and BV = BV ∪ {bc}.
5. k := k + 1.

6. goto 2.

Now cardinality constraints are over far fewer variables.

Therefore, tighter relaxation and less wasteful search in satisfiability checks.

Exercise 22.3
a. Show that this algorithm obtains the maximum?
b. How can we incrementally construct cardinality constraints?

The clauses that have participated in
cores have blocking variables.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 16

Example: core restricted cardinality constraints

Example 22.3

Recall the shortest path soft clauses
∧

v∈V ¬pv

Let us suppose we got two unsat cores {¬px ,¬py} and {¬pu,¬pv ,¬pw} in first two iterations.

In previous algorithm, we will insert blocking bits bx , by , bu, bv , bw as follows

▶ ¬px ∨ bx
▶ ¬py ∨ by
▶ ¬pu ∨ bu
▶ ¬pv ∨ bv
▶ ¬pw ∨ bw

We will add cardinality constraint bx + by + bu + bv + bw ≤ 2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 17

We are still relaxing too much?

We are adding
bx + by + bu + bv + bw ≤ 2

We are asking the solver to block at most any two of the five soft constraints.

It may end up blocking ¬px and ¬py .

We already know that there is no solution for this blocking combination, since nothing is blocked
from the other unsat core.

We can be more precise and add bx + by ≤ 1 ∧ bu + bv + bw ≤ 1

Exactly one soft clause is to be blocked from each core.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 18

Overlapping cores

If cores overlap we can not add separate learned inequalities?

Example 22.4

Let us suppose we got two unsat cores {¬px ,¬py} and {¬px ,¬pv ,¬pw} in first two iterations.

We cannot add two constraints bx + by ≤ 1 ∧ bx + bv + bw ≤ 1.

Since bx = 1 and by = 1 removes both cores and is not satisfied by the above constraints.

If overlap we have to create inequalities that is combined.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 19

Two solutions

▶ Fresh blocking variable for each core (Fu-malik)

▶ Maintain disjoint sets of clauses of overlapping cores

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 20

Fu-Malik: fresh blocking variable for each core

1. k := 0,

2. If |= Hard ∧ Soft, return k

3. Otherwise, get unsat core K of Hard ∧ Soft

4. BV = {}
5. For each c ∈ K .

5.1 Insert a fresh blocking variable bc in c and BV = BV ∪ {bc}.
6. Hard := Hard ∧ CNF (

∑
bc∈BV bc ≤ 1)

7. k := k + 1.

8. goto 2.

Since we compare with 1 only, simpler constraints!!

A clause may get multiple
blocking variable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 21

Overlapping cores

Example 22.5

Let us again consider two unsat cores {¬px ,¬py} and {¬px ,¬pv ,¬pw} in first two iterations.

A blocking bit for each clause in each core.

▶ ¬px ∨ bx1 ∨ bx2
▶ ¬py ∨ by
▶ ¬pu ∨ bu
▶ ¬pv ∨ bv
▶ ¬pw ∨ bw

Adds too many new variables with symmetric roles. Burden on future iterations.

Gets two blocking variables,
since ¬px occurs in two cores.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 22

Maintain disjoint core covers
We can keep that records of cores that do not overlap.

Definition 22.2
A cover is a set of overlapping cores and two covers do not have cores that overlap with each other.

We maintain a set Covers of covers.

▶ Let F [Covers] :=
∧

Cover∈Covers CNF (
∑

bc∈K∈Cover bc ≤ |Cover |).

▶ Let Covers ′ := mergeCover(Covers,K) insert core K in Covers as follows

1. Covers ′ = {}, NewCover = {K}
2. For each Cover ∈ Covers

▶ If ∃K ′ ∈ Cover . K ′ ∩ K ̸= ∅, NewCover := NewCover ∪ Cover
▶ Otherwise, Covers ′ := Covers ′ ∪ {Cover}

3. return Covers ′ ∪ {NewCover}

Number of cores in the cover

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 23

Example: cover

Example 22.6

Consider unsat cores after five iterations.

▶ {¬px ,¬py}
▶ {¬px ,¬pz}
▶ {¬pu,¬pv}
▶ {¬pa,¬pw}
▶ {¬pa,¬pv ,¬pc}

Covers := {
{ {¬px ,¬py}, {¬px ,¬pz} },
{ {¬pu,¬pv}, {¬pa,¬pw}, {¬pa,¬pv ,¬pc} }

}

F [Covers] := bx + by + bz ≤ 2 ∧ bu + bv + bw + ba + bc ≤ 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 24

Maxsat via core covers

1. k := 0,Covers = {}
2. If |= Hard ∧ Soft ∧ F [Covers], return k

3. Otherwise, get unsat core K of Hard ∧ Soft ∧ F [Covers]

4. Covers := mergeCovers(Covers,K).

5. k := k + 1.

6. goto 2. Covers is an equivalence
class over clauses

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 25

LP methods

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 26

Topic 22.3

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2022 Instructor: Ashutosh Gupta IITB, India 27

End of Lecture 22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Maxsat
	Methods for maxsat
	Problems

