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Topic 2.1

Formal model of execution
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Introducing parallel composition

We add parallel composition in our simple programming language.

c || c
We define interleaved semantics as follows

((v , c1||c2), (v ′, c1
′||c2)) ∈ T if ((v , c1), (v ′, c1

′)) ∈ T

((v , c1||c2), (v ′, c1||c2′)) ∈ T if ((v , c2), (v ′, c2
′)) ∈ T

((v , skip||skip), (v , skip)) ∈ T

Interleaved semantics

Each c is
called a thread.
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Global variables

Definition 2.1
We call a variable global if two or more threads access the variable. Other variables are called local.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 5

Topic 2.2

Understanding time in interleaved semantics
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Instantaneous events

Events happen in threads

I are instantaneous

I No simultaneous events
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Global instantaneous events

On global variables

I Writes

I Reads

I Read/Write

Synchronization

I fences

We write them as follows

R/W<VariableName>=<Value>|fence
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Events on a timeline

init: counter := 0

thread0:

a1:tmp0 := counter

a2:counter = tmp0 + 1

||
thread1:

b1:tmp1 := counter

b2:counter = tmp1 + 1

Global event order in a possible execution:

thread0: Rcounter =1

thread1: Rcounter =1

thread1: Wcounter =2

thread0: Wcounter =2

Time is always totally ordered.
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Intervals

I Often things are not instantaneous

I Takes time to finish such as function calls.

Definition 2.2
An interval

A = (e1, e2)
is time between events e1 and e2.
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Intervals may or may not overlap

Example 2.1

Operations on stack:

Thread 0

Thread 1

push(1)

1= pop() 0=pop()
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Happens before relation (hb)

Definition 2.3
If A ends before A starts, we say A happens before B.

B

A
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Strict partial order

Theorem 2.1
hb relation is a strict partial order.

Proof.
hb has the following properties of strict partial order.

I Antisymmetry: hb(A,B) ⇒ ¬hb(B,A)

I Transitivity: hb(A,B) ∧ hb(B,C ) ⇒ hb(A,C )

I Irreflexive: ¬hb(A,A)

Exercise 2.1
Which condition to add in partial orders conditions such that it becomes total order?
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Orders that we know: program order(po)

po : events in a thread are ordered.

Wx = 0

Ry = 0

po
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Orders that we know: read from(rf)

rf : every read reads from exactly one write

Wx = 0

Rx = 1

rf
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Orders that we know: write serialization(ws)

ws : all writes on a global are totally ordered

Wx = 0

Wx = 1

ws Not directly
observed
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Orders that we know: from read(fr)

fr : no write comes between the pair in rf

WaF = 0

WaF = 1

(po ∪ ws ∪ rf)+

RaF = 0

rf

fr
Derived relation.
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Traces

Definition 2.4
A trace consists of the following relations.

I po : events in a thread are ordered.

I rf : every read reads from exactly one write

I ws : all writes on a global are totally ordered

I fr : no other write comes between the read write pairs in rf

Definition 2.5
A trace is valid if (po ∪ rf ∪ ws ∪ fr)+ is strict partial order.

Theorem 2.2
An execution of a program induces only a valid trace.
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Analyzing programs using traces

For analyzing a program,

1. We enumerate all (possibly infinite) execution paths in each thread.

2. Each path has a set of events and defines po.

3. We enumerate all rf by mapping each read to some write if values match.

4. We enumerate all ws among writes.

5. Using po, rf, and ws, we compute fr and check if trace is valid.

If no trace reaches a bad state, then program is safe.
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Topic 2.3

Formal properties of mutual exclusion protocols
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Structure of mutual exclusion protocol

In a typical mutual exclusion protocol, we have the following structure

I Global initialization

I Some code before critical section, called lock

I critical section

I Some code after critical section, called unlock

init: counter := 0

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}
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Properties: mutual exclusion

init: counter := 0

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}

Let i th occurrence of critical section in thread 0 be interval CS0 i =(c0,u0) .

For all i and j , hb(CS0 i , CS1j) ∨ hb(CS1j , CS0 i)
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Properties: deadlock free

init: counter := 0

thread0:

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

thread1:

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}

If thread0 visits l0 and never reaches u0,
then thread1 visits u1 infinitely often.

And also symmetric condition. Assumes fair scheduling.
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Properties: starvation free

init: counter := 0

thread0:

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

thread1:

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}

If thread0 visits l0, it eventually reaches u0.
And also symmetric condition. Assumes fair scheduling for the thread; not others.Precise statements
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Topic 2.4

Analyzing mutual exclusion protocols
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Example: Flag

init: f0 := false , f1 := false

thread0:

while(true){

l0: f0 := true

while(f1);

c0: // critical section

u0: f0 := false

}

||

thread1:

while(true){

l1: f1 := true

while(f0);

c1: // critical section

u1: f1 := false

}
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Example: proving mutual exclusion for Flag

Violating execution: Assume threads reached c0 and c1 at the same time
...

Wf0 = 1

Rf1 = 1

...

Rf1 = 0

c0

...

Wf1 = 1

Rf0 = 1

...

Rf0 = 0

c1

po

rf

fr

The above drawing proves that there will be no violation of mutual exclusion.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 27

Example: Flag can deadlock
...

l0:Wf0 = 1

Rf1 = 1

...

Rf1 = 1

...

Assume never reaches u0

...

Wf1 = 1

Rf0 = 1

...

Rf0 = 1

...

Does not visit u1 infinitely often

po

rf

Trace does not have cycles and does not violate fair scheduling. Therefore, execution possible.

Exercise 2.2 Under our definition, does deadlock ⇒ starvation?

Commentary: Not all rf edges are drawn. We need
to check for all of them.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 28

Flag: an observation

I Concurrent execution may deadlock

I Sequential execution does not
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Example: LucknowNawab

init: v := random ()

thread0:

while(true){

l0: v := 0

while( v == 0);

c0: // critical section

u0: skip

}

||

thread1:

while(true){

l1: v := 1

while( v == 1);

c1: // critical section

u1: skip

}
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Example: proving mutual exclusion for LucknowNawab
Violating execution: Assume threads reached c0 and c1 at the same time

...

Wv = 0

Rv = 0

...

Rv = 1

c0

...

Wv = 1

Rv = 1

...

Rv = 0

c1

po

rf

ws

The above drawing proves that there will be no violation of mutual exclusion.

Exercise 2.3
If the last reads, read from some earlier writes, will the drawing continue to work?
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Example: proving deadlock freedom for LucknowNawab

Violating execution: Assume thread 0 and thread 1 are stuck at inner loops.
...

Wv = 0

Rv = 0

...

Rv = 0

...

...

Wv = 1

Rv = 1

...

Rv = 1

...

po

rf

ws

fr

Wv = 0 has to wait for infinite time, which violates fair scheduling assumption. Therefore, we
cannot have deadlock.
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Example: starvation execution in LucknowNawab

...

Wv = 0

Rv = 0

...

never reaches u0

po

Starvation in sequential execution! Odd!

Exercise 2.4
Does LucknowNawab really starve under the formal definition? Is the fair scheduling assumption
real?
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Example: Peterson (Nawab meets Flag)

init: f0 := false , f1 := false , v:= random ()

thread0:

while(true){

l0: f0 := true

v := 0

while(f1 && v==0);

c0: // critical section

u0: f0 := false

}

||

thread1:

while(true){

l1: f1 := true

v := 1

while(f0 && v==1);

c1: // critical section

u1: f1 := false

}

The inner loop has two conditions. If any of them fails, the thread enters in the critical section.

There are four (2x2) scenarios that lead to violation.
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Example: proving mutual exclusion for Peterson (scenario 1: flag proof)

Scenario 1: Assume conditions f0 and f1 failed at the same time
...

Wf0 = 1

Wv = 0

...

Rf1 = 0

...

c0

...

Wf1 = 1

Wv = 1

...

Rf0 = 0

...

c1

porf

ws

fr
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Example: proving mutual exclusion for Peterson (scenario 2: Nawab proof)

Scenario 2: Assume conditions v == 0 and v == 1 failed at the same time
Wf0 = 1

Wv = 0

...

...

Rv = 1

c0

Wf1 = 1

Wv = 1

...

...

Rv = 0

c1

po

rf

ws
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Example: proving mutual exclusion for Peterson (scenario 3/4)

Scenario 3: Assume conditions v == 0 and f0 failed at the same time
...

Wf0 = 1

Wv = 0

...

...

Rv = 1

c0

...

Wf1 = 1

Wv = 1

...

Rf0 = 0

...

c1

porf

ws

fr

The drawings for the four scenarios prove that there will be no violation of mutual exclusion.
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Example: proving deadlock freedom for Peterson: Like LucknowNawab

...

Wv = 0

loop:Rf1 = 1

loop:Rv = 0

loop:Rf1 = 1

Rv = 0

...

...

Wv = 1

loop:Rf0 = 1

loop:Rv = 1

loop:Rf0 = 1

loop:Rv = 1

...

po

rf

ws

fr

Wv = 0 has to wait for infinite time, which violates fair scheduling assumption. Therefore, we
cannot have deadlock.
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End of Lecture 2
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