
cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs 2022

Lecture 2: Traces

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2022-02-18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 2

Topic 2.1

Formal model of execution

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 3

Introducing parallel composition

We add parallel composition in our simple programming language.

c || c
We define interleaved semantics as follows

((v , c1||c2), (v ′, c1
′||c2)) ∈ T if ((v , c1), (v ′, c1

′)) ∈ T

((v , c1||c2), (v ′, c1||c2′)) ∈ T if ((v , c2), (v ′, c2
′)) ∈ T

((v , skip||skip), (v , skip)) ∈ T

Interleaved semantics

Each c is
called a thread.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 4

Global variables

Definition 2.1
We call a variable global if two or more threads access the variable. Other variables are called local.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 5

Topic 2.2

Understanding time in interleaved semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 6

Instantaneous events

Events happen in threads

I are instantaneous

I No simultaneous events

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 7

Global instantaneous events

On global variables

I Writes

I Reads

I Read/Write

Synchronization

I fences

We write them as follows

R/W<VariableName>=<Value>|fence

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 8

Events on a timeline

init: counter := 0

thread0:

a1:tmp0 := counter

a2:counter = tmp0 + 1

||
thread1:

b1:tmp1 := counter

b2:counter = tmp1 + 1

Global event order in a possible execution:

thread0: Rcounter =1

thread1: Rcounter =1

thread1: Wcounter =2

thread0: Wcounter =2

Time is always totally ordered.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 9

Intervals

I Often things are not instantaneous

I Takes time to finish such as function calls.

Definition 2.2
An interval

A = (e1, e2)
is time between events e1 and e2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 10

Intervals may or may not overlap

Example 2.1

Operations on stack:

Thread 0

Thread 1

push(1)

1= pop() 0=pop()

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 11

Happens before relation (hb)

Definition 2.3
If A ends before A starts, we say A happens before B.

B

A

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 12

Strict partial order

Theorem 2.1
hb relation is a strict partial order.

Proof.
hb has the following properties of strict partial order.

I Antisymmetry: hb(A,B) ⇒ ¬hb(B,A)

I Transitivity: hb(A,B) ∧ hb(B,C) ⇒ hb(A,C)

I Irreflexive: ¬hb(A,A)

Exercise 2.1
Which condition to add in partial orders conditions such that it becomes total order?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 13

Orders that we know: program order(po)

po : events in a thread are ordered.

Wx = 0

Ry = 0

po

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 14

Orders that we know: read from(rf)

rf : every read reads from exactly one write

Wx = 0

Rx = 1

rf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 15

Orders that we know: write serialization(ws)

ws : all writes on a global are totally ordered

Wx = 0

Wx = 1

ws Not directly
observed

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 16

Orders that we know: from read(fr)

fr : no write comes between the pair in rf

WaF = 0

WaF = 1

(po ∪ ws ∪ rf)+

RaF = 0

rf

fr
Derived relation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 17

Traces

Definition 2.4
A trace consists of the following relations.

I po : events in a thread are ordered.

I rf : every read reads from exactly one write

I ws : all writes on a global are totally ordered

I fr : no other write comes between the read write pairs in rf

Definition 2.5
A trace is valid if (po ∪ rf ∪ ws ∪ fr)+ is strict partial order.

Theorem 2.2
An execution of a program induces only a valid trace.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 18

Analyzing programs using traces

For analyzing a program,

1. We enumerate all (possibly infinite) execution paths in each thread.

2. Each path has a set of events and defines po.

3. We enumerate all rf by mapping each read to some write if values match.

4. We enumerate all ws among writes.

5. Using po, rf, and ws, we compute fr and check if trace is valid.

If no trace reaches a bad state, then program is safe.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 19

Topic 2.3

Formal properties of mutual exclusion protocols

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 20

Structure of mutual exclusion protocol

In a typical mutual exclusion protocol, we have the following structure

I Global initialization

I Some code before critical section, called lock

I critical section

I Some code after critical section, called unlock

init: counter := 0

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 21

Properties: mutual exclusion

init: counter := 0

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}

Let i th occurrence of critical section in thread 0 be interval CS0 i =(c0,u0) .

For all i and j , hb(CS0 i , CS1j) ∨ hb(CS1j , CS0 i)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 22

Properties: deadlock free

init: counter := 0

thread0:

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

thread1:

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}

If thread0 visits l0 and never reaches u0,
then thread1 visits u1 infinitely often.

And also symmetric condition. Assumes fair scheduling.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 23

Properties: starvation free

init: counter := 0

thread0:

while(true){

l0: lock()

c0: tmp0 := counter

counter := tmp0 + 1

u0: unlock()

}

||

thread1:

while(true){

l1: lock()

c1: tmp1 := counter

counter := tmp1 + 1

u1: unlock()

}

If thread0 visits l0, it eventually reaches u0.
And also symmetric condition. Assumes fair scheduling for the thread; not others.Precise statements

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 24

Topic 2.4

Analyzing mutual exclusion protocols

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 25

Example: Flag

init: f0 := false , f1 := false

thread0:

while(true){

l0: f0 := true

while(f1);

c0: // critical section

u0: f0 := false

}

||

thread1:

while(true){

l1: f1 := true

while(f0);

c1: // critical section

u1: f1 := false

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 26

Example: proving mutual exclusion for Flag

Violating execution: Assume threads reached c0 and c1 at the same time
...

Wf0 = 1

Rf1 = 1

...

Rf1 = 0

c0

...

Wf1 = 1

Rf0 = 1

...

Rf0 = 0

c1

po

rf

fr

The above drawing proves that there will be no violation of mutual exclusion.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 27

Example: Flag can deadlock
...

l0:Wf0 = 1

Rf1 = 1

...

Rf1 = 1

...

Assume never reaches u0

...

Wf1 = 1

Rf0 = 1

...

Rf0 = 1

...

Does not visit u1 infinitely often

po

rf

Trace does not have cycles and does not violate fair scheduling. Therefore, execution possible.

Exercise 2.2 Under our definition, does deadlock ⇒ starvation?

Commentary: Not all rf edges are drawn. We need
to check for all of them.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 28

Flag: an observation

I Concurrent execution may deadlock

I Sequential execution does not

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 29

Example: LucknowNawab

init: v := random ()

thread0:

while(true){

l0: v := 0

while(v == 0);

c0: // critical section

u0: skip

}

||

thread1:

while(true){

l1: v := 1

while(v == 1);

c1: // critical section

u1: skip

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 30

Example: proving mutual exclusion for LucknowNawab
Violating execution: Assume threads reached c0 and c1 at the same time

...

Wv = 0

Rv = 0

...

Rv = 1

c0

...

Wv = 1

Rv = 1

...

Rv = 0

c1

po

rf

ws

The above drawing proves that there will be no violation of mutual exclusion.

Exercise 2.3
If the last reads, read from some earlier writes, will the drawing continue to work?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 31

Example: proving deadlock freedom for LucknowNawab

Violating execution: Assume thread 0 and thread 1 are stuck at inner loops.
...

Wv = 0

Rv = 0

...

Rv = 0

...

...

Wv = 1

Rv = 1

...

Rv = 1

...

po

rf

ws

fr

Wv = 0 has to wait for infinite time, which violates fair scheduling assumption. Therefore, we
cannot have deadlock.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 32

Example: starvation execution in LucknowNawab

...

Wv = 0

Rv = 0

...

never reaches u0

po

Starvation in sequential execution! Odd!

Exercise 2.4
Does LucknowNawab really starve under the formal definition? Is the fair scheduling assumption
real?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 33

Example: Peterson (Nawab meets Flag)

init: f0 := false , f1 := false , v:= random ()

thread0:

while(true){

l0: f0 := true

v := 0

while(f1 && v==0);

c0: // critical section

u0: f0 := false

}

||

thread1:

while(true){

l1: f1 := true

v := 1

while(f0 && v==1);

c1: // critical section

u1: f1 := false

}

The inner loop has two conditions. If any of them fails, the thread enters in the critical section.

There are four (2x2) scenarios that lead to violation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 34

Example: proving mutual exclusion for Peterson (scenario 1: flag proof)

Scenario 1: Assume conditions f0 and f1 failed at the same time
...

Wf0 = 1

Wv = 0

...

Rf1 = 0

...

c0

...

Wf1 = 1

Wv = 1

...

Rf0 = 0

...

c1

porf

ws

fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 35

Example: proving mutual exclusion for Peterson (scenario 2: Nawab proof)

Scenario 2: Assume conditions v == 0 and v == 1 failed at the same time
Wf0 = 1

Wv = 0

...

...

Rv = 1

c0

Wf1 = 1

Wv = 1

...

...

Rv = 0

c1

po

rf

ws

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 36

Example: proving mutual exclusion for Peterson (scenario 3/4)

Scenario 3: Assume conditions v == 0 and f0 failed at the same time
...

Wf0 = 1

Wv = 0

...

...

Rv = 1

c0

...

Wf1 = 1

Wv = 1

...

Rf0 = 0

...

c1

porf

ws

fr

The drawings for the four scenarios prove that there will be no violation of mutual exclusion.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 37

Example: proving deadlock freedom for Peterson: Like LucknowNawab

...

Wv = 0

loop:Rf1 = 1

loop:Rv = 0

loop:Rf1 = 1

Rv = 0

...

...

Wv = 1

loop:Rf0 = 1

loop:Rv = 1

loop:Rf0 = 1

loop:Rv = 1

...

po

rf

ws

fr

Wv = 0 has to wait for infinite time, which violates fair scheduling assumption. Therefore, we
cannot have deadlock.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 38

End of Lecture 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Formal model of execution
	Understanding time in interleaved semantics
	Formal properties of mutual exclusion protocols
	Analyzing mutual exclusion protocols

