
cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs 2022

Lecture 11: Proof systems for concurrent programs

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2022-02-08

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 2

Explicit events analysis is limited

I We have seen analysis of concurrent programs with a bounded set of events

I How do we analyze when we do not have such limits?

We need a proof system.

Commentary: Example and presentation ideas are borrowed from https://fzn.fr/teaching/mpri/2010/fzn-mpri-2010-3.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://fzn.fr/teaching/mpri/2010/fzn-mpri-2010-3.pdf

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 3

Topic 11.1

Proof systems for programs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 4

Hoare logic for sequential programs

I Hoare logic is one of the frameworks for the reasoning over programs

I Other logics reason over sets of traces and transitions instead of states

I Can we develop something for concurrent programs?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 5

Proof systems for concurrent programs

I Näive extension of Hoare logic by treating the vector of program counters as a variable
Not a practical solution(why?)

I Two proof systems that extend Hoare logic for concurrency

1. Owicki-Gries
2. Rely-Guarantee (not covered in this lecture)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 6

Topic 11.2

Owicki-Gries proof system

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 7

How can we reason over parallel composition?

I Consider all possible interleavings

I Reasoning needs ability to summarize effect of all of them in state formulas

Example 11.1

Consider
x := x + 1 || x := x + 2

We my conclude : if initially x = 0, the program finishes with x = 3.

We may write Hoare triple

{x = 0} x := x + 1 || x := x + 2 {x = 3}

How can we derive the Hoare triple from the behavior of parts?

Commentary: A state formula only refers to variables
of a program and does not relate values the variables
at different time points.

Assume assignments are atomic

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 8

Soundness vs completeness

We will design the proof rule for parallel composition.

As we go along, we may be unsound or incomplete, or both.

We will fix those issues in small steps.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 9

Attempt 1: let us model it like nondeterminism (Incomplete and unsound)

[ParLikeNondet]
{P}c1{Q} {P}c2{Q}
{P}c1||c2{Q}

Example 11.2

{x = 0}x := x + 1{x = 1} {y = 0}y := y + 1{y = 1}
{x = y = 0}x := x + 1||y := y + 1{x = y = 1}

Rejected by the rule

Example 11.3

{x = 0}x := x + 1{x = 1} {x = 0}x := x + 1{x = 1}
{x = 0}x := x + 1||x := x + 1{x = 1}

7

We need to combine the effect of both the programs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 10

Attempt 2: conjunction of precondition and postcondition (Unsound)

[ParConjunctive]
{P1}c1{Q1} {P2}c2{Q2}
{P1 ∧ P2}c1||c2{Q1 ∧ Q2}

Example 11.4

{y = 1}x := 1{y = 1} {>}y := 0{>}
{y = 1}x := 1||y := 0{y = 1}

7

What went wrong? Thread two interfered with truth value of (pre)postcondition of thread one.

We need to detect interference.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 11

Attempt 3: monitor interference (Still unsound)
The following condition says that program c does not modify any variable in set of formulas Σ.

NoMod(c,Σ) , modifyVars(c) ∩ FreeVars(Σ) = ∅

[ParNoMod]
{P1}c1{Q1} {P2}c2{Q2}
{P1 ∧ P2}c1||c2{Q1 ∧ Q2}

NoMod(c2, {P1,Q1}) and NoMod(c1, {P2,Q2})

Example 11.5

{z = 0}x := z; y := x{y = 0} {>}x := 2{>}
{z = 0}x := z; y := x||x := 2{y = 0}

7

What went wrong? We did not check for interference on intermediate formulas.

We need to detect interference at all intermediate steps.

Commentary: We choose FreeVars because we may
have quantified formulas in our pre/postcondition

Is the above rule applicable?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 12

Example : interference explicated

Example 11.6

Let us look at our example again and write the expanded proof.

{z = 0}x := z; {x = 0} {x = 0}y := x{y = 0}
{z = 0}x := z; y := x{y = 0} {>}x := 2{>}

{z = 0}x := z; y := x||x := 2{y = 0}
7

x := 2 interferes with x = 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 13

Idea: collect intermediate formulas

We modify all proof rules to collect intermediate formulas. For example,

[Assign]
{P[exp/x]}x := exp{P, {P,P[exp/x]}}

[Seq]
{P}c1{Q,Σ1} {Q}c2{R,Σ2}
{P}c1; c2{R,Σ1 ∪ Σ2}

Example 11.7

{x > 1}x := x− 1{x > 0, {x > 1, x > 0}}

Exercise 11.1
Write collecting version of all the rules of Hoare logic.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 14

Attempt 4: no interference on collected formulas (Sound, but incomplete)

[ParNoModCollect]
{P1}c1{Q1,Σ1} {P2}c2{Q2,Σ2}
{P1 ∧ P2}c1||c2{Q1 ∧ Q2,Σ1 ∪ Σ2}

NoMod(c2,Σ1) and NoMod(c1,Σ2)

Example 11.8

A good derivation:

{x > 0}y := x; {y > 0, {x > 0, y > 0}} {>}x := x + 1{>, {>}}
{x > 0}y := x||x := x + 1{y > 0, {x > 0, y > 0,>}}

Rejected by the rule!

Because NoMod(x := x + 1, {x > 0}) is false.

What went wrong? We went overboard. NoMod is a syntactic check.

Let us make NoMod false only if modifications really interfere.

This proof rule is correct.
But too restrictive

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 15

Idea: collect writes
Since only writes interfere, let us collect them explicitly.

We modify all proof rules to collect writes along with intermediate formulas. For example,

[Assign]
{P[exp/x]}x := exp{P, {P,P[exp/x]}, {x := exp}}

[Seq]
{P}c1{Q,Σ1,Wrs1} {Q}c2{R,Σ2,Wrs2}
{P}c1; c2{R,Σ1 ∪ Σ2,Wrs1 ∪Wars2}

Example 11.9

{x > 0}y := x; {y > 0, {x > 0, y > 0}, {y := x}}

Exercise 11.2
Write collecting version of all the rules of Hoare logic.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 16

Attempt 5: semantic no interference condition (Still incomplete)

The following condition checks writes in Ws do not interfere invariants in Σ.

NoI (Ws,Σ) ,
∧

c∈Ws

∧
P∈Σ

{P}c{P}holds

[ParNoInter]
{P1}c1{Q1,Σ1,Ws1} {P2}c2{Q2,Σ2,Ws2}
{P1 ∧ P2}c1||c2{Q1 ∧ Q2,Σ1 ∪ Σ2,Ws1 ∪Ws2}

NoI (Ws2,Σ1) and NoI (Ws1,Σ2)

Example 11.10

{x > 0}y := x; {y > 0, {x > 0, y > 0}, {y := x}} {>}x := x + 1{>, {>}, {x := x + 1}}
{x > 0}y := x||x := x + 1{y > 0, {x > 0, y > 0,>}, {y := x, x := x + 1}}

3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 17

Are we done?

Not quite.

Example 11.11
Consider the following correct derivation which is disallowed by [ParNoInter].

{x > 1}y := x; {y > 1, {x > 1, y > 1}, {y := x}} {x > 3}x := x− 1{>, {x > 3}, {x := x− 1}}
{x > 3}y := x||x := x− 1{y > 1, {...}, {...}}

The derivation is not possible because
NoI ({x := x− 1}, {x > 1, y > 1})
={x > 1}x := x− 1{x > 1}︸ ︷︷ ︸

Does not hold

and {y > 1}x := x− 1{y > 1} = ⊥

We are not complete. We are still rejecting good proofs.

How can we weaken our rule, while preserving soundness?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 18

Idea: collect writes with context

We modify [Assign] rule again to collect writes with their contexts. For example,

[Assign]
{P[exp/x]}x := exp{P, {P,P[exp/x]}, { {P[exp/x]}x := exp }}

We also need to modify [Havoc]. Rest remains the same.

Example 11.12

{x > 0}y := z; {x > 0, {x > 0}, { {x > 0}y := z }}

Write with the condition under
which it executes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 19

Attempt 6: Owicki-Gries proof rule (Sound and complete)

The following condition checks writes in Ws do not interfere invariants in Σ.

NoInter(Ws,Σ) ,
∧

{Q}c∈Ws

∧
P∈Σ

{P ∧ Q}c{P}holds

[Par]
{P1}c1{Q1,Σ1,Ws1} {P2}c2{Q2,Σ2,Ws2}
{P1 ∧ P2}c1||c2{Q1 ∧ Q2,Σ1 ∪ Σ2,Ws1 ∪Ws2}

NoInter(Ws2,Σ1) and NoInter(Ws1,Σ2)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 20

Example: interference checking with context

Example 11.13

{x > 1}y := x; {y > 1, {x > 1, y > 1}, {{x > 1}y := x}} {x>3}x := x−1{>, {x > 3}, {{x > 3}x := x−1}}
{x > 3}y := x||x := x− 1{y > 1, {...}, {...}}

3

The above derivation is acceptable by the Par rule because the side conditions are satisfied.

NoInter(Ws2,Σ1) = NoInter({{x > 3}x := x− 1}, {x > 1, y > 1})
= {x > 1 ∧ x > 3}x := x− 1{x > 1} and {y > 1 ∧ x > 3}x := x− 1{y > 1} = >

Exercise 11.3
Show NoInter(Ws1,Σ2) is true.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 21

Example: let us prove a program
Let us prove.

{x = 0}x := x + 1||x := x + 2{x = 3}

Let us display the Owicki-Gries proof in a more convenient notation

{x = 0}

{P1 : x = 0 ∨ x = 2}
x := x + 1;
{Q1 : x = 1 ∨ x = 3}

||
{P2 : x = 0 ∨ x = 1}
x := x + 2;
{Q2 : x = 2 ∨ x = 3}

{x = 3}

Noninterference checks:
I {P2 ∧ P1}x := x + 1{P2}
I {Q2 ∧ P1}x := x + 1{Q2}

I {P1 ∧ P2}x := x + 2{P1}
I {Q1 ∧ P2}x := x + 2{Q1}

Exercise 11.4
a. Check x = 0⇒ P1 ∧ P2 and Q1 ∧ Q2 ⇒ x = 3. b. Check noninterference checks.

Commentary: Please check if this proof matches with
earlier the proof-rule like notation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 22

Example: let us prove one more
Let us suppose we need to prove.

{x = 0}x := x + 1||x := x + 1{x = 2}

Here is a Owicki-Gries proof.

{x = 0 ∧ pc1 = 0 ∧ pc2 = 0}

{pc1 = 0∧(pc2 = 0⇒ x = 0)∧(pc2 = 1⇒ x = 1)}
x := x + 1; pc1 := 1;
{pc1 = 1∧(pc2 = 0⇒ x = 1)∧(pc2 = 1⇒ x = 2)}

|| {pc2 = 0∧(pc1 = 0⇒ x = 0)∧(pc1 = 1⇒ x = 1)}
x := x + 1; pc2 := 1;
{pc2 = 1∧(pc1 = 0⇒ x = 1)∧(pc1 = 1⇒ x = 2)}

{x = 2}

Noninterference check remain the same. Please verify!

Locals may appear in the proof of the other thread.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 23

Thread modular proofs

Definition 11.1
An Owicki-Gries proof is thread modular if the proof of a thread only refer to its locals and the
globals.

Proofs are not thread modular, when globals lack information to describe the invariants.

Example 11.14

In a mutual exclusion protocol, if globals do not record who has the lock, then we need to refer to
program counters of threads in the proofs.

Non-thread modular proofs tend to be cumbersome. As a principle, it is desirable to minimize
reference to the locals of other threads.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 24

Another example: proving victim mutual exclusion

{>}
{P1 : >}

0 : victim = 0;
{Q1 : (pc2 6= 1⇒ victim = 0)}

1 : while(victim == 0);
{R1 : pc1 = 2 ∧ pc2 = 1 ∧ victim = 1}

2 : //critical section

||

{P2 : >}
0 : victim = 1;
{Q2 : (pc1 6= 1⇒ victim = 1)}

1 : while(victim == 1);
{R2 : pc2 = 2 ∧ pc1 = 1 ∧ victim = 0}

2 : //critical section

{⊥}
Some noninterference checks for thread 1 invariants against thread 2 writes:
I No write can interfere with P1, since it is >.
I {Q1 ∧ >}pc2 = 0 ∧ victim′ = 1 ∧ pc′2 = 1{Q1}
I {Q1 ∧ (pc1 6= 1⇒ victim = 1)}pc2 = 1 ∧ victim = 0 ∧ victim = victim′ ∧ pc′2 = 2;︸ ︷︷ ︸

Exit branch of the loop in the second thread

{Q1}

Exercise 11.5
a. Show R1, P2, Q2, R2 are free from interference.
b. How many noninterference checks are needed?

Says both the threads cannot finish

Since exit from the loop modifies pc2, we
need to check the formulas that mention it.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2022 Instructor: Ashutosh Gupta IITB, India 25

End of Lecture 11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Proof systems for programs
	Owicki-Gries proof system

