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CS228 Logic for Computer Science 2022

Lecture 3: Semantics and truth tables

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2022-01-03

Commentary: In this lecture, we will assign meaning to logical formulas. We will see truth tables as the fundamental method of inferring facts about formulas. We also
analyze the expressive power of PL, which informs us of the limitations of a given logic.
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Topic 3.1

Semantics - meaning of the formulas
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Truth values

We denote the set of truth values as B , {0, 1}.

0 and 1 are only distinct objects without any intuitive meaning.

We may view 0 as false and 1 as true, but it is only our emotional response to the symbols.
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Model

Definition 3.1
A model is an element of Vars→ B.

Example 3.1

{p1 7→ 1, p2 7→ 0, p3 7→ 0, . . . } is a model

Since Vars is countably infinite, the set of models is non-empty and infinite.

A model m may or may not satisfy a formula F .
The satisfaction relation is usually denoted by m |= F in infix notation.
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Propositional logic semantics

Definition 3.2
The satisfaction relation |= between models and formulas is the relation that satisfies the following
conditions.

I m |= >
I m |= p if m(p) = 1

I m |= ¬F if m 6|= F

I m |= F1 ∨ F2 if m |= F1 or m |= F2

I m |= F1 ∧ F2 if m |= F1 and m |= F2

I m |= F1 ⊕ F2 if m |= F1 or m |= F2, but not both

I m |= F1 ⇒ F2 if if m |= F1 then m |= F2

I m |= F1 ⇔ F2 if m |= F1 iff m |= F2

Exercise 3.1
Why ⊥ is not explicitly mentioned in the above definition?

Commentary: The definition defines a relation |=,
which is fundamentally a set of pairs. Note that this
definition of defining relations is inductive. There is
an assumption here if some pair is not explicitly men-
tioned to be in the relation, then it is not in the rela-
tion. Unfortunately, we were not initiated with such
definitions when we started learning sets and relations.
We usually see non-inductive definition of infinite sets.
For example, {G |graph G is cyclic}.
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Example: satisfaction relation

Example 3.2

Consider model m = {p1 7→ 1, p2 7→ 0, p3 7→ 0, . . . } and formula (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

(p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

p1 (¬p2 ⇔ (p1 ∧ p3))

¬p2

p2

(p1 ∧ p3)

p1 p3

m |=

m |=m 6|= m 6|=

m |= m 6|=

m 6|=

m 6|=

Exercise 3.2
Formally, write the satisfiability checking procedure .
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Satisfiable, valid, unsatisfiable

We say

I m satisfies F if m |= F ,

I F is satisfiable if there is a model m such that m |= F ,

I F is valid (written |= F ) if for each model m m |= F , and

I F is unsatisfiable (written 6|= F ) if there is no model m such that m |= F .

Exercise 3.3
If F is sat then ¬F is .
If F is valid then ¬F is .
If F is unsat then ¬F is .

A valid formula is also called a tautology.
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Overloading |= : set of models

We extend the usage of |= in the following natural ways.

Definition 3.3
Let M be a (possibly infinite) set of models. M |= F if for each m ∈ M, m |= F .

Example 3.3

{{p → 1, q → 1}, {p → 1, q → 0}} |= p ∨ q

Exercise 3.4
Which of the following hold?

I {{p → 1, q → 1}, {p → 0, q → 0}} |= p

I {{p → 1, q → 1}} |= p ∧ q

I {{pi → (k = i)|i ∈ N}|k ∈ N} |= p1

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Overloading |= : set of formulas

Definition 3.4
Let Σ be a (possibly infinite) set of formulas.
Σ |= F if for each model m that satisfies each formula in Σ, m |= F .

I Σ |= F is read Σ implies F .

I If {G} |= F then we may write G |= F .

Example 3.4

{p, q} |= p ∨ q

Exercise 3.5
Which of the following hold?
I {p, q} |= p ∧ q

I {p ⇒ q, q ⇒ p} |= p ⇔ q

I {p ⇒ q, q} |= p ⊕ q

I {p ⇒ q,¬q, p} |= p ⊕ q
Commentary: If Σ is finite, the definition of Σ |= F means

∧
Σ ⇒ F is valid. Why are we inventing a new notation? Because, Σ can be an infinite set. ∧ is not

applicable on an infinite set. (why?)
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Equivalent

Definition 3.5
Let F ≡ G if for each model m

m |= F iff m |= G .

Example 3.5

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Equisatisfiable

Definition 3.6
Formulas F and G are equisatisfiable if

F is sat iff G is sat.

Commentary: The concept of equisatisfiable is used in formula transformations. We often say that after a transformation the formula remained equisatisfiable. The
definition is confusing now. Once we will see the usage it will become clear to us.
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Topic 3.2

Decidability of SAT
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Notation alert: decidable

A problem is decidable if there is an
algorithm to solve the problem.
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Propositional satisfiability problem

The following problem is called the satisfiability problem

For a given F ∈ P, is F satisfiable?

Theorem 3.1
The propositional satisfiability problem is decidable.

Proof.
Let n = |Vars(F )|.
We need to enumerate 2n elements of Vars(F )→ B.

If any of the models satisfy the formula, then F is sat. Otherwise, F is unsat.

Exercise 3.6
Give a procedure to decide the validity of a formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS228 Logic for Computer Science 2022 Instructor: Ashutosh Gupta IITB, India 15

Complexity of the decidability question?

I If we enumerate all models to check satisfiability, the cost is exponential

I We do not know if we can do better.

I However, there are several tricks that have made satisfiability checking practical for the
real-world formulas.
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Topic 3.3

Truth tables
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Truth tables

Truth tables was the first method to decide propositional logic.

The method is usually presented in slightly different notation. We need to assign a truth value to
every formula.
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Truth function

A model m is in Vars→ B.

We can extend m to P→ B in the following way.

m(F ) =

{
1 m |= F

0 otherwise.

The extended m is called truth function.

Since truth functions are natural extensions of models, we did not introduce new symbols.
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Truth functions for logical connectives

Let F and G be logical formulas, and m be a model.
Due to the semantics of the propositional logic, the following holds for the truth functions.

m(F ) m(¬F )

0 1
1 0

m(F ) m(G ) m(F ∧ G ) m(F ∨ G ) m(F ⊕ G ) m(F ⇒ G ) m(F ⇔ G )

0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Truth table
For a formula F , a truth table consists of 2|Vars(F )| rows. Each row considers one of the models
and computes the truth value of F for each of them.

Example 3.6

Consider (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3))). We will not write m(.) in the top row for brevity.

p1 p2 p3 (p1 ⇒ ( ¬ p2 ⇔ ( p1 ∧ p3 )))

0 0 0 0
0
0
0
1
1
1
1

1
1
1
1
0
1
1
0

1
1
0
0
1
1
0
0

0
0
1
1
0
0
1
1

0
0
1
1
0
1
1
0

0
0
0
0
1
1
1
1

0
0
0
0
0
1
0
1

0
1
0
1
0
1
0
1

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

The column under the leading connective has 1s therefore the formula is sat. But, there are some
0s in the column therefore the formula is not valid.
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Example : DeMorgan law

Example 3.7

Let us show p ∨ q ≡ ¬(¬p ∧ ¬q).

p q (p ∨ q) ¬ (¬ p ∧ ¬ q)

0 0 0
1
1
1

0
1
1
1

1
1
0
0

0
0
1
1

1
0
0
0

1
0
1
0

0
1
0
1

0 1
1 0
1 1

Since the truth values of both the formulas are same in each row, the formulas are equivalent.

Exercise 3.7
Show p ∧ q ≡ ¬(¬p ∨ ¬q) using a truth table

Commentary: p ∧ q ≡ ¬(¬p ∨ ¬q) and p ∨ q ≡ ¬(¬p ∧ ¬q) are called DeMorgan law.
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Example : definition of ⇒

Example 3.8

Let us show p ⇒ q ≡ (¬p ∨ q).

p q (p ⇒ q) (¬ p ∨ q)

0 0 1
1
0
1

1
1
0
0

0
0
1
1

1
1
0
1

0
1
0
1

0 1
1 0
1 1

Since the truth values of both the formulas are same in each row, the formulas are equivalent.

It appears that ⇒ is a redundant symbol. We can write it in terms of the other symbols.
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Example : definition of ⇔

Example 3.9

Let us show p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p).

p q (p ⇔ q) (p ⇒ q) ∧ (q ⇒ p)

0 0 1
0
0
1

0
0
1
1

1
1
0
1

0
1
0
1

1
0
0
1

0
1
0
1

1
0
1
1

0
0
1
1

0 1
1 0
1 1
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Example: definition ⊕

Example 3.10

Let us show (p ⊕ q) ≡ (¬p ∧ q) ∨ (p ∧ ¬q) using truth table.

p q (p ⊕ q) (¬ p ∧ q) ∨ (p ∧ ¬ q)

0 0 0
1
1
0

1
1
0
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
0
1
1

0
0
1
0

1
0
1
0

0
1
0
1

0 1
1 0
1 1

Exercise 3.8
Show (p ⊕ q) ≡ (¬p ∨ ¬q) ∧ (p ∨ q)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: associativity

Example 3.11

Let us show (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p q r (p ∧ q) ∧ r p ∧ (q ∧ r)

0 0 0 0
0
0
0
1
1
1
1

0
0
0
0
0
0
1
1

0
0
1
1
0
0
1
1

0
0
0
0
0
0
0
1

0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
1

0
0
1
1
0
0
1
1

0
0
0
1
0
0
0
1

0
1
0
1
0
1
0
1

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Exercise: associativity

Exercise 3.9
Prove/disprove using truth tables

I (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

I (p ⊕ q)⊕ r ≡ p ⊕ (q ⊕ r)

I (p ⇔ q)⇔ r ≡ p ⇔ (q ⇔ r)

I (p ⇒ q)⇒ r ≡ p ⇒ (q ⇒ r)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Exercise: distributivity

Exercise 3.10
Prove/disprove using truth tables prove that ∧ distributes over ∨ and vice-versa.

I p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

I p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Tedious truth tables

I We need to write 2n rows even if a simple observation about the formula can prove
(un)satisfiability.

For example,
I (a ∨ (c ∧ a)) is sat (why? - no negation)
I (a ∨ (c ∧ a)) ∧ ¬(a ∨ (c ∧ a)) is unsat (why?- contradiction at the top level)

I We should be able to take such shortcuts?

We will see methods that will
allow us to take such shortcuts.
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Topic 3.4

Expressive power of propositional logic
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Boolean functions

A finite Boolean function is in Bn → B.

A formula F with Vars(F ) = {p1, . . . , pn} can be viewed as a Boolean function f that is defined as
follows.

for each model m, f (m(p1), . . . ,m(pn)) = m(F )

We say F represents f .

Example 3.12

Formula p1 ∨ p2 represents the following function

f = {(0, 0)→ 0, (0, 1)→ 1, (1, 0)→ 1, (1, 1)→ 1}

A Boolean function is another way of writing truth table.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Expressive power

Theorem 3.2
For each finite Boolean function f , there is a formula F that represents f .

Proof.
Let f : Bn → B. We construct a formula F to represent f .

Let p0
i , ¬pi and p1

i , pi .

For (b1, . . . , bn) ∈ Bn, let F(b1,...,bn) ,

{
(pb1

1 ∧ · · · ∧ pbnn ) if f (b1, . . . , bn) = 1

⊥ otherwise.

F , F(0,...,0) ∨ · · · ∨ F(1,...,1)︸ ︷︷ ︸
All Boolean combinations

Exercise 3.11
Workout if F really represents f .

We used only three logical
connectives to construct F

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Insufficient expressive power

If we do not have sufficiently many logical connectives, we cannot represent all Boolean functions.

Example 3.13

∧ alone can not express all Boolean functions.

To prove this we show that Boolean function f = {0→ 1, 1→ 1} can not be achieved by any
combination of ∧s.

We setup induction over the sizes of formulas consisting a variable p and ∧.

Commentary: We are assuming that only one variable occurs in the formula, since there is exactly one input to f . Our definition of “represents” requires the number of
variables must match the arity of the function.
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Insufficient expressive power II

base case:
Only choice is p.(why?) For p = 0, the function does not match.

induction step:
Let us assume that formulas F and G of size less than n − 1 do not represent f .
We construct a longer formula in the following way.

(F ∧ G )

The formula does not represent f , because we can pick(why?) a model when F produces 0.

Therefore ∧ alone is not fully expressive.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Minimal logical connectives
We used

I 2 0-ary,

I 1 unary, and

I 5 binary

connectives to describe the propositional logic.

However, it is not the minimal set needed for the full expressivity.

Example 3.14

¬ and ∨ define the whole propositional logic.
I > ≡ p ∨ ¬p for some p ∈ Vars

I ⊥ ≡ ¬>
I (p ∧ q) ≡ ¬(¬p ∨ ¬q)

I (p ⊕ q) ≡ (p ∧ ¬q) ∨ (¬p ∧ q)

I (p ⇒ q) ≡ (¬p ∨ q)

I (p ⇔ q) ≡ (p ⇒ q) ∧ (q ⇒ p)

Exercise 3.12
a. Show ¬ and ∧ can define all the other connectives b. Show ⊕ alone can not define ¬

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 3.5

Problems
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Semantics

Exercise 3.13
Show F [⊥/p] ∧ F [>/p] |= F |= F [⊥/p] ∨ F [>/p].

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Truth tables

Exercise 3.14
Prove/disprove validity of the following formulas using truth tables.

1. (p ⇒ (q ⇒ r))⇔ ((p ∧ q)⇒ r))

2. p ∧ (q ⊕ r)⇔ (p ∧ q)⊕ (q ∧ r)

3. (p ∨ q) ∧ (¬q ∨ r)⇔ (p ∨ r)

4. ⊥ ⇒ F for any F

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Expressive power

Exercise 3.15
Show ¬ and ⊕ is not as expressive as propositional logic.

Exercise 3.16
Prove/disprove that the following subsets of connectives are fully expressive.

I ∨,⊕
I ⊥,⊕
I ⇒,⊕
I ∨,∧
I ⇒,⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Expressive power(2)

Exercise 3.17
Prove/disprove: if-then-else is fully expressive

Exercise 3.18
Show ⇒ alone can not express all the Boolean functions
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Distinguishing power

Let P ′ ⊆ P be a set of formulas that is obtained by allowing a subset of logical connectives in
propositional logic. Let us define the following definition.

Definition 3.7
P ′ has distinguishing power over M ⊆ Vars → B, if for each distinct pair m,m′ ∈ M there is a
formula F ∈ P ′ such that m |= F and m′ 6|= F .

Exercise 3.19
Claim: P ′ can express all Boolean functions if and only if P ′ has distinguishing power over
Vars → B. Prove/Disprove both the directions of the claim.
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All minimal combinations*

Exercise 3.20
List all minimal subsets of the logical connectives that are fully expressive.
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Encode Boolean functions***

Exercise 3.21
Find smallest formulas that encode the following functions over n inputs

I Encode parity function

I Encode majority function
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|= vs. ⇒

Exercise 3.22
Using truth table prove the following

I F |= G if and only if |= (F ⇒ G ).

I F ≡ G if and only if |= (F ⇔ G ).
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Exercise: downward saturation

Exercise 3.23
Let us suppose we only have connectives ∧, ∨, or ¬ in our formulas. Consider a set Σ of formulas
such that

1. for each p ∈ Vars, p 6∈ Σ or ¬p 6∈ Σ

2. if ¬¬F ∈ Σ then F ∈ Σ

3. if (F ∧ G ) ∈ Σ then F ∈ Σ and G ∈ Σ

4. if ¬(F ∨ G ) ∈ Σ then ¬F ∈ Σ and ¬G ∈ Σ

5. if (F ∨ G ) ∈ Σ then F ∈ Σ or G ∈ Σ

6. if ¬(F ∧ G ) ∈ Σ then ¬F ∈ Σ or ¬G ∈ Σ

Show that Σ is satisfiable, i.e., there is a model that satisfies every formula in Σ.

Exercise 3.24
Give an algorithm that extends a set Σ such that it satisfies the above. Can we use the algorithm
as a satisfiability checker?
Commentary: Please note that the above does not hold if we drop any of the six conditions. You also need to show that all six are needed and nothing else is needed.
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Exercise: counting models

Exercise 3.25
Let propositional variables p, q, are r be relevant to us. There are eight possible models to the
variables. Out of the eight, how many satisfy the following formulas?

1. p

2. p ∨ q

3. p ∨ q ∨ r

4. p ∨ ¬p ∨ r
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Exercise: universal connective

Let ∧ be a binary connective with the following truth table

m(F ) m(G ) m(F∧G )

0 0 1
0 1 1
1 0 1
1 1 0

Exercise 3.26
a. Show ∧ can define all other connectives
b. Are there other universal connectives?
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Expressive power

Exercise 3.27
Consider two variable formulas using only ⇒. How many different Boolean functions can they
represent? Prove your count, i.e., show that all the counted functions can be represented and no
other function can be represented using only ⇒.
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Topic 3.6

Extra slides: sizes of models
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Size of models

A model must assign value to all the variable, since it is a complete function.

However, we may not want to handle such an object.

In practice, we handle partial models. Often, without explicitly mentioning this.
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Partial models

Let m|Vars(F ) : Vars(F )→ B and for each p ∈ Vars(F ), m|Vars(F )(p) = m(p)

Theorem 3.3
If m|Vars(F ) = m′|Vars(F ) then m |= F iff m′ |= F

Proof sketch.
The procedure to check m |= F only looks at the Vars(F ) part of m. Therefore, any extension of
m|Vars(F ) will have same result either m |= F or m 6|= F .

Definition 3.8
We will call elements of Vars ↪→ B as partial models.

Exercise 3.28
Write the above proof formally.
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End of Lecture 3
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