CS228 Logic for Computer Science 2022

Lecture 8: Completeness

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2022-01-21

Topic 8.1

Completeness

Completeness

Now let us ask the daunting question!!!!!

Is resolution proof system complete?

In other words,

if Σ is unsatisfiable, are we guaranteed to derive $\Sigma\vdash \bot$ via resolution?

We need a notion of not able to derive something.

Clauses derivable with proofs of depth n

We define the set $Res^n(\Sigma)$ of clauses that are derivable via resolution proofs of at most depth *n* from the set of clauses Σ .

Definition 8.1

Let Σ be a set of clauses.

$$Res^{0}(\Sigma) \triangleq \Sigma$$
$$Res^{n+1}(\Sigma) \triangleq Res^{n}(\Sigma) \cup \{C | C \text{ is a resolvent of clauses } C_{1}, C_{2} \in Res^{n}(\Sigma)\}$$

Example 8.1

$$Let \Sigma = \{(p \lor q), (\neg p \lor q), (\neg q \lor r), \neg r\}.$$

$$Res^{0}(\Sigma) = \Sigma$$

$$Res^{1}(\Sigma) = \Sigma \cup \{q, p \lor r, \neg p \lor r, \neg q\}$$

$$Res^{2}(\Sigma) = Res^{1}(\Sigma) \cup \{r, q \lor r, p, \neg p, \bot\}$$

All derivable clauses

 $Res^n(\Sigma)$ may saturate at some time point.

Definition 8.2 Let Σ be a set of clauses. There may be some m such that

$$\mathit{Res}^{m+1}(\Sigma) = \mathit{Res}^m(\Sigma).$$

Let $Res^*(\Sigma) \triangleq Res^m(\Sigma)$.

If Σ is finite then *m* certainly exists.

Completeness

Theorem 8.1

If a finite set of clauses Σ is unsatisfiable, $\bot \in Res^*(\Sigma)$.

Proof.

We prove the theorem using induction over number of variables in $\Sigma.$ Wlog, We assume that there are no tautology clauses in $\Sigma_{.(why?)}$

base case:

p is the only variable in Σ . Assume Σ is unsat. Therefore, $\{p, \neg p\} \subseteq \Sigma$.

We have the following derivation of \perp .

$$\frac{\Sigma \vdash p \qquad \Sigma \vdash \neg p}{\mid}$$

Completeness (contd.)

Proof(contd.)

induction step:

Assume: theorem holds for all the formulas containing variables $p_1, ..., p_n$. Consider an unsatisfiable set Σ of clauses containing variables $p_1, ..., p_n, p$. Let

► $\Sigma_0 \triangleq$ the set of clauses from Σ that have *p*.

▶ $\Sigma_1 \triangleq$ be the set of clauses from Σ that have $\neg p$.

▶ $Σ_* \triangleq$ be the set of clauses from Σ that have neither *p* nor ¬p. Furthermore, let

•
$$\Sigma'_0 \triangleq \{C - \{p\} | C \in \Sigma_0\}$$

• $\Sigma'_1 \triangleq \{C - \{\neg p\} | C \in \Sigma_1\}$

$$\Sigma = \Sigma_0 \wedge \Sigma_1 \wedge \Sigma_*$$

Exercise 8.1

Show
$$\Sigma'_0 \models \Sigma_0$$
 and $\Sigma'_1 \models \Sigma_1$
©0.000 CS228 Logic for Computer Science 2022

Example: projections

Example 8.2 Consider $\Sigma = \{p_1 \lor p, p_2, \neg p_1 \lor \neg p_2 \lor p, \neg p_2 \lor \neg p\}$

$$\begin{split} \Sigma_0 &= \{ p_1 \lor p, \neg p_1 \lor \neg p_2 \lor p \} \\ \Sigma_1 &= \{ \neg p_2 \lor \neg p \} \\ \Sigma_* &= \{ p_2 \} \end{split}$$

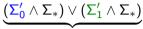
$$\begin{split} \boldsymbol{\Sigma}_0' &= \{\boldsymbol{p}_1, \neg \boldsymbol{p}_1 \lor \neg \boldsymbol{p}_2\} \\ \boldsymbol{\Sigma}_1' &= \{\neg \boldsymbol{p}_2\} \end{split}$$

Let us get familiar with an important formula: $(\Sigma'_0 \wedge \Sigma_*) \lor (\Sigma'_1 \wedge \Sigma_*) = \{p_1, \neg p_1 \lor \neg p_2, p_2\} \lor \{\neg p_2, p_2\}$

Completeness (contd.)

Proof(contd.)

Now consider formula



p is not in the formula

claim: If $(\Sigma'_0 \wedge \Sigma_*) \vee (\Sigma'_1 \wedge \Sigma_*)$ is sat then Σ is sat.

- Assume for some $m, m \models (\Sigma'_0 \land \Sigma_*) \lor (\Sigma'_1 \land \Sigma_*).$
- Therefore, $m \models \Sigma_{*}$.(why?)
- ► Case 1: $m \models (\Sigma'_1 \land \Sigma_*)$. Since all the clauses of Σ_0 have p, $m[p \mapsto 1] \models \Sigma_{0(why?)}$. Since Σ'_1 and Σ_* have no p, $m[p \mapsto 1] \models \Sigma'_1$ and $m[p \mapsto 1] \models \Sigma_*$. Since $\Sigma'_1 \models \Sigma_1$, $m[p \mapsto 1] \models \Sigma_1$.

• Case 2: $m \models (\Sigma'_0 \land \Sigma_*)$. Symmetrically, $m[p \mapsto 0] \models \Sigma_0 \land \Sigma_1 \land \Sigma_*$.

• Therefore, $\Sigma_0 \wedge \Sigma_1 \wedge \Sigma_*$ is sat.

Exercise 8.2 Show Σ and $(\Sigma'_0 \wedge \Sigma_*) \vee (\Sigma'_1 \wedge \Sigma_*)$ are equivalent but not equivalent.

Completeness (contd.)

$$\begin{split} & \text{Proof(contd.)} \\ & \text{Since } \Sigma \text{ is unsat, } (\Sigma_0' \wedge \Sigma_*) \vee (\Sigma_1' \wedge \Sigma_*) \text{ is unsat.} \end{split}$$

Now we apply the induction hypothesis. Since $(\Sigma'_0 \wedge \Sigma_*) \vee (\Sigma'_1 \wedge \Sigma_*)$ is unsat and has no $p, \perp \in Res^*(\Sigma'_0 \wedge \Sigma_*)$ and $\perp \in Res^*(\Sigma'_1 \wedge \Sigma_*)$.

Choose a derivation of \bot from both. Now there are two cases.

Case 1: \bot was derived using only clauses from Σ_* in any of the two proofs. Therefore, $\bot \in Res^*(\Sigma_*)$. Therefore, $\bot \in Res^*(\Sigma_0 \land \Sigma_1 \land \Sigma_*)$.

Case 2: In both the derivations Σ'_0 are Σ'_1 are involved respectively.

Example: choosing derivations

Example 8.3

Recall our example $\Sigma_* = \{p_2\}, \Sigma'_0 = \{p_1, \neg p_1 \lor \neg p_2\}, \Sigma'_1 = \{\neg p_2\}.$

Proofs for our running example

The above proofs belong to the case 2.

The above proofs do not start from clauses that are from Σ . So we cannot use them immediately. We need a construction.

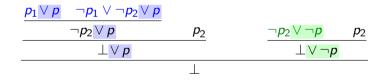
Completeness (contd.)

Proof(contd.)

Case 2: In both the derivations Σ'_0 are Σ'_1 are involved respectively.(contd.) Therefore, $p \in Res^*(\Sigma_0 \land \Sigma_*)$ and $\neg p \in Res^*(\Sigma_1 \land \Sigma_*)$.(why?)[needs thinking; look at the example to understand.] Therefore, $\bot \in Res^*(\Sigma_0 \land \Sigma_1 \land \Sigma_*)$ (why?).

Example 8.4

Recall proofs.



Exercise 8.3

Let F be an unsatisfiable CNF formula with n variables. Show that there is a resolution proof of \perp from F of size that is smaller than or equal to $2^{n+1} - 1$.

Commentary: By inserting p in Σ'_0 clauses of the left proof we obtain clauses of Σ_0 . Therefore, the proof transforms into a proof from $\Sigma_0 \wedge \Sigma_*$. Since there are no $\neg p$ anywhere in $\Sigma_0 \wedge \Sigma_*$, we are guaranteed a leftover p. We need a symmetric argument for deriving $\neg p$ from $\Sigma_1 \wedge \Sigma_*$.

© () \$0	CS228 Logic for Cor	nputer Science 2	2022	Instructor: Ashutosh G	upta	IITB, India	12

Completeness so far

Theorem 8.2

Let Σ be a finite set of formulas and F be a formula. The following statements are equivalent.

►
$$\Sigma \vdash F$$

► $\emptyset \in Res^*(\Sigma')$, where Σ' is CNF of $\bigwedge \Sigma \land \neg F$
► $\Sigma \models F$
Proof.
Proof can be generated
 $\emptyset \in Res^*(\Sigma')$ ← $\Sigma \models F$

Exercise 8.4

How is the last theorem applicable here?

ast theorem

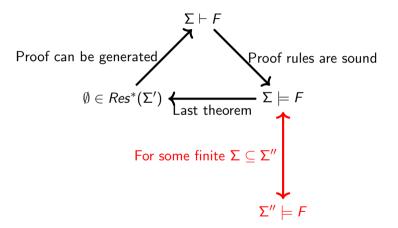
13

Topic 8.2

Finite to Infinite

How do we handle $\Sigma'' \models F$ if Σ'' is an infinite set?

There is an interesting argument.



We prove that if an infinite set implies a formula, then a finite subset also implies the formula.

A theorem on strings

Theorem 8.3

Consider an infinite set S of finite binary strings. There exists an infinite string w such that the following holds.

$$\forall n. |\{w' \in S | w_n \text{ is prefix of } w'\}| = \infty$$

where w_n is prefix of w of length n.

Proof.

We inductively construct w, and we will keep shrinking S. Initially $w := \epsilon$.

Commentary: ϵ is the empty string.

base case:

w is prefix of all strings in S.

A theorem on strings (contd.)

Proof(contd.)

induction step:

Let us suppose we have w of length n and w is prefix of all strings in S.

- Let $S_0 := \{u \in S | u \text{ has } 0 \text{ at } n + 1th \text{ position} \}.$
- Let $S_1 := \{u \in S | u \text{ has } 1 \text{ at } n + 1th \text{ position} \}.$
- ▶ Let $S_{\epsilon} := S \cap \{ w \}$.

Clearly, $S = S_{\epsilon} \cup S_0 \cup S_1$. Either S_0 or S_1 is infinite.(why?) If S_0 is infinite, w := w0 and $S := S_0$. Otherwise, w := w1 and $S := S_1$. w of length n + 1 is prefix of all strings in the shrunk S.

Therefore, we can construct the required w.

Exercise 8.5

- a. Is the above construction of w practical?
- b. Construct infinite w for set S containing words of form 0^*1

@**()**\$0

Compactness

Theorem 8.4

A set Σ of formulas is satisfiable iff every finite subset of Σ is satisfiable.

Proof. Forward direction is trivial.(why?)

Reverse direction:

We order formulas of Σ in some order, *i.e.*, $\Sigma = \{F_1, F_2, \dots, \}$.

Let $\{p_1, p_2, ...\}$ be ordered list of variables from Vars (Σ) such that

- variables in $Vars(F_1)$ followed by
- the variables in $Vars(F_2) Vars(F_1)$, and so on.

Due to the rhs, we have models m_n such that $m_n \models \bigwedge_{i=1}^n F_i$.

We need to construct a model *m* such that $m \models \Sigma$. Let us do it!

Compactness (contd.) II

Proof(contd.)

We assume m_n : Vars $(\bigwedge_{i=1}^n F_i) \to \mathcal{B}$.

Commentary: Notation alert: we assumed our models assign values to all variables. Here we are defining a different object that maps only finitely many variables.

We may see m_n as finite binary strings, since variables are ordered $p_1, p_2, ...$ and m_n is assigning values to some first k variables.

Let $S = \{m_n \text{ as a string } | n > 0\}$

Due to the previous theorem, there is an infinite binary string m such that each prefix of m is prefix of infinitely many strings in S.

Example : some m_n may not be a prefix of m

Example 8.5

Consider $\Sigma = \{ p \lor q, \neg p \land r, \dots \}$

Let $m_1 = \{p \mapsto 1, q \mapsto 0\}$

Let
$$m_2 = \{p \mapsto 0, q \mapsto 1, r \mapsto 1\}$$

Note that $m_1 \not\models \neg p \land r$. Therefore, m_1 will not be prefix of any m_n and consequently not prefix of m.

Exercise 8.6

Give an example of Σ , $m_n s$, and m following the construction of previous slide such that no m_n is prefix of m?

Compactness (contd.) III

Proof(contd.)

claim: if we interpret *m* as a model_(how?), then $m \models \Sigma$.

- Consider a formula $F_n \in \Sigma$.
- Let k be the number of variables appearing in $\bigwedge_{i=1}^{n} F_i$.

CS228 Logic for Computer Science 2022

- Let m' be the prefix of length k of m.
- ▶ There must be $m_j \in S$, such that m' is prefix of m_j and $j > n_{(why?)}$
- Since $m_j \models \bigwedge_{i=1}^j F_i$, $m_j \models F_n$.
- ▶ Therefore, $m' \models F_n$.
- ▶ Therefore, $m \models F_n$.

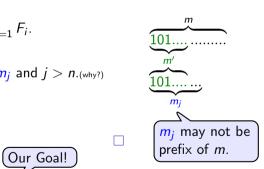
Exercise 8.7

 Θ

Using the above theorem prove that if $\Sigma'' \models F$ then there is a finite $\Sigma \subseteq \Sigma''$ such that $\Sigma \models F$.

Commentary: m' may not be m_n as in the example 8.5. The theorem is about showing that even if m_n is not there, there is some other model that satisfies F_n . Furthermore, m_j may also be not a prefix of m. Surprised! Georg Cantor lost his mind thinking about ∞ . Lookout for BBC documentary Dangerous Knowledge.

Instructor: Ashutosh Gupta



IITB. India

21

Implication is decidable for finite lhs.

Theorem 8.5

If Σ is a finite set of formulas, then $\Sigma \models F$ is decidable.

Proof.

Due to truth tables.

Two definitions: effectively enumerable and semi-decidable

Definition 8.3

If we can enumerate a set using an algorithm, then it is called effectively enumerable.

Example 8.6

- The set of all programs is effectively enumerable, since they are finite strings that can be parsed.
- > The set of all terminating programs is not effectively enumerable.

Definition 8.4

A yes/no problem is semi-decidable, if we have an algorithm for only one side of the problem.

Commentary: The above definitions will be formally covered in complexity theory and automata theory.							
ତ୍ତାର୍ତ୍ତ	CS228 Logic for Computer Science 2022	Instructor: Ashutosh Gupta	IITB, India	23			

Implication is semi-decidable

Theorem 8.6

If Σ is effectively enumerable, then $\Sigma \models F$ is at least semi-decidable.

Proof.

Due to compactness if $\Sigma \models F$, there is a finite set $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models F$. Since Σ is effectively enumerable, let $G_1, G_2, ...$ be the enumeration of Σ . Let $S_n \triangleq \{G_1, \ldots, G_n\}$. There must be a $S_k \supseteq \Sigma_{0 \text{(why?)}}$. Therefore, $S_k \models F$. We may enumerate S_n and check $S_n \models F$, which is decidable. Therefore, eventually we will say yes if $\Sigma \models F$.

Commentary: If $\Sigma \models F$ does not hold, the above procedure will not terminate. Therefore, implication is only semi-decidable and not decidable. However, the proof is not complete. It does not show that there is no other algorithm that can not decide $\Sigma \models F$.

Topic 8.3

Problems

Slim proofs

For an unsatisfiable CNF formula F, a resolution proof R is a sequence of clauses such that:

- Each clause in R is either from F or derived by resolution from the earlier clauses in R.
- The last clause in R is \perp .

Consider the following definitions

► For a clause *C* and literal
$$\ell$$
, let $C|_{\ell} \triangleq \begin{cases} \top & \ell \in C \\ C - \{\overline{\ell}\} & \text{otherwise.} \end{cases}$

- ► Let $F|_{\ell} \triangleq \bigwedge_{C \in F} C|_{\ell}$.
- Let width(R) and width(F) be the length of the longest clause in R and F, respectively.
- ▶ Let $slimest(F) \triangleq min(\{width(R) | R \text{ is resolution proof of unsatisfiability of } F\}).$

Exercise 8.8

Prove the following facts.

1. if $F|_{\ell}$ has an unsatisfiability proof, then $F \wedge \ell$ has an unsatisfiability proof.

2. if $k \ge width(F)$, $slimest(F|_{\ell}) \le k-1$, and $slimest(F|_{\ell}) \le k$ then $slimest(F) \le k$.

Exercise: connect finite and infinite

Exercise 8.9

Consider an infinite set S of finite binary strings. Prove/disprove: For each infinite binary string w the following holds.

 $\forall n. |\{w' \in S | w_n \text{ is prefix of } w'\}| > 0$ iff $\forall n. |\{w' \in S | w_n \text{ is prefix of } w'\}| = \infty$

where w_n is prefix of w of length n.

End of Lecture 8

