CS228 Logic for Computer Science 2022 # Lecture 16: FOL - conjunctive normal form Instructor: Ashutosh Gupta IITB, India Compile date: 2022-02-10 ### CNF normalization steps We can convert any FOL sentence into a first-order logic conjunctive normal form(FOL CNF). We will define FOL CNF by following the process of transformation. The following transformations results in the CNF. - 1. Rename apart : rename variables for each quantifier - 2. Negation normal form : push negation inside - 3. Prenex form: pull quantifiers to front - 4. Skolemization: remove existential quantifiers (only satisfiability preserving) - 5. CNF transformation: turn the quantifier-free part of the sentence into CNF - 6. Syntactical removal of universal quantifiers: a CNF with free variables. Step 1: rename apart ### Name does not matter ### Theorem 16.1 If $x, y \notin FV(F(z))$, then $\forall x.F(x)$ and $\forall y.F(y)$ are provably equivalent. ### Proof. - 1. $\{\forall x.F(x)\} \vdash \forall x.F(x)$ Assumption - 2. $\{\forall x.F(x)\} \vdash F(y)$ \forall -Instantiation applied to 1 - 3. $\{\forall x.F(x)\} \vdash \forall y.F(y)$ \forall -Intro applied to 2, since $y \notin FV(\forall x.F(x))$ - We can run the proof in both the directions. ### Exercise 16.1 - a. Prove: if $x, y \notin FV(F(z))$, then $\exists x.F(x)$ and $\exists y.F(y)$ are provably equivalent. - b. Give proof for renaming a quantified variable to a fresh name that is not on the top. ## Step 1: rename apart ### Definition 16.1 A formula F is renamed apart if no quantifier in F use a variable that is used by another quantifier or occurs as free variable in F. Due to the previous theorem, we can assume that every quantifier has different variable. If not, we can rename quantified variables apart. ### Example 16.1 Consider formula $\neg(\exists x. \forall y R(x,y) \Rightarrow \forall y. \exists x (R(x,y) \land P(x)))$. After renaming apart we obtain the following $$\neg(\exists x. \forall y. R(x, y) \Rightarrow \forall z. \exists w. (R(w, z) \land P(w)))$$ Step 2: negation normal form ## Relating \forall and \exists Theorem 16.2 If we have $\Sigma \vdash \neg \exists x. \neg F(x)$, we can prove $\Sigma \vdash \forall x. F(x)$. ### Proof. 1. $$\Sigma \vdash \neg \exists x. \neg F(x)$$ 5. $\Sigma \vdash \forall x.F(x)$ 2. $$\Sigma \cup \{\neg F(y)\} \vdash \neg F(y)$$ 3. $$\Sigma \cup \{\neg F(y)\} \vdash \exists x. \neg F(x)$$ 4. $$\Sigma \vdash F(y)$$ a. Prove: if we have $$\Sigma \vdash \neg \forall x. F(x)$$, we can prove $\Sigma \vdash \exists x. \neg F(x)$. b. Prove: if we have $\Sigma \vdash \neg \exists x. F(x)$, we can prove $\Sigma \vdash \forall x. \neg F(x)$. (Hint: replace $\neg F(.)$ by $F(.)$ in the above proof) Commentary: The reverse direction of the above equivalences are proven in the extra slides of this lecture. @(P)(S)(9) CS228 Logic for Computer Science 2022 Instructor: Ashutosh Gupta ∃-Intro Premise propositional rules applied to 1 and 3 ∀-Intro on 4 Assumption (choose fresh $v_{(why?)}$) # Step 2: negation normal form(NNF) ### Definition 16.2 A formula F is in negation normal form if all the negation symbols in the formula occur in form of atomic formulas. Due to the previous theorems and the properties of propositional connectives, we can translate any formula in negation normal form. ## Example: negation normal form ### Exercise 16.3 We convert $\neg(\exists x. \forall y. R(x, y) \Rightarrow \forall z. \exists w. (R(w, z) \land P(w)))$ into NNF as follows $$\neg(\exists x. \forall y. R(x, y) \Rightarrow \forall z. \exists w. (R(w, z) \land P(w))) \equiv (\exists x. \forall y. R(x, y) \land \neg \forall z. \exists w. (R(w, z) \land P(w)))$$ $$\equiv (\exists x. \forall y. R(x, y) \land \exists z. \neg \exists w. (R(w, z) \land P(w)))$$ $$\equiv (\exists x. \forall y. R(x, y) \land \exists z. \forall w. \neg (R(w, z) \land P(w)))$$ $$\equiv (\exists x. \forall y. R(x, y) \land \exists z. \forall w. (\neg R(w, z) \lor \neg P(w)))$$ Step 3: prenex form ## No occurrence: no issues ### Theorem 16.3 1 $\Sigma \vdash F$ Let x be a variable such that $x \notin FV(F)$. Then F, $\exists x.F$, and $\forall x.F$ are provably equivalent. ### Proof. We have already seen $\forall x.F$ to $\exists x.F$. Proving from F to $\forall x.F$ conditions are met.(why?) Premise 2. $\Sigma \vdash \forall x. F \quad \forall$ -Intro applied to 1 Since x is not in F, we choose $y, z \notin FV(\Sigma \cup \{F\})$ and say $F(z)\{z \mapsto y\} = F. \ \forall$ -Intro Proving from $\exists x.F$ to F 1. $\Sigma \vdash \exists x.F$ 2. $\Sigma \cup \{F\} \vdash F$ **Premise** Assumption 3. $\Sigma \vdash F \Rightarrow F$ propositional rules applied to 2 4. $\Sigma \vdash \exists x.F \Rightarrow F$ ∃-Elim applied to 3 5. $\Sigma \vdash F$ propositional rules applied to 4 and 1 **Commentary:** Please check if the side conditions of \exists -Elim are met in step 4 of the right proof. Why absence of x is important in the proof? # No occurrence; we can pull quantifiers to top #### Theorem 16.4 If $x \notin FV(G)$, then $\exists x.F(x) \land \exists x.G$ and $\exists x.(F(x) \land G)$ are provably equivalent. # Proof. Reverse direction is trivial. Consider the forward direction. 1. $$\Sigma \vdash \exists x. F(x) \land \exists x. G$$ 2. $$\Sigma \vdash \exists x.G$$ 3 $$\Sigma \vdash G$$ 4. $$\Sigma \cup \{F(x)\} \vdash F(x) \land G$$ 5. $$\Sigma \cup \{F(x)\} \vdash \exists x.(F(x) \land G)$$ 6. $$\Sigma \vdash F(x) \Rightarrow \exists x.(F(x) \land G)$$ 7. $$\Sigma \vdash \exists x. F(x) \Rightarrow \exists x. (F(x) \land G)$$ 8. $$\Sigma \vdash \exists x. (F(x) \land G)$$ Exercise 16.4 Commentary: If x occurs in G, which step of the following proof does not work? Premise # propositional rules applied to 1 propositional rules applied to 7 and $1 \square$ $$\Rightarrow$$ -Intro applied to 5 $$\exists$$ -Elim applied to 6 12 If $$x \notin FV(G)$$, then $\forall x.F(x) \lor \forall x.G$ and $\forall x.(F(x) \lor G)$ are provably equivalent. Instructor: Ashutosh Gupta ## Step 3: prenex form ### Definition 16.3 A formula F is in prenex form if all the quantifiers of the formula occur as prefix of F. The quantifier-free suffix of F is called matrix of F. Due to the previous theorems, we move quantifiers to the front. ### Exercise 16.5 Show that the following equivalences hold. $$x.F \Rightarrow G \equiv \exists x.(F \Rightarrow G)$$ $$ightharpoonup \exists x.F \Rightarrow G \equiv \forall x.(F \Rightarrow G)$$ $$ightharpoonup F \Rightarrow \forall x.G \equiv \forall x.(F \Rightarrow G)$$ # Example: prenex form ### Exercise 16.6 We convert $(\exists x. \forall y. R(x, y) \land \exists z. \forall w. (\neg R(w, z) \lor \neg P(w)))$ into prenex form as follows - $(\exists x. \forall y. R(x,y) \land \exists z. \forall w. (\neg R(w,z) \lor \neg P(w)))$ - $\underbrace{\exists z. \forall w. \exists x. \forall y.}_{Quantifiers} \underbrace{\left(R(x,y) \land \left(\neg R(w,z) \lor \neg P(w)\right)\right)}_{body/matrix\ of\ the\ formula}$ We move quantifier forward step by step. In the standard definition of prenex, the body need not be in NNF. Our body is in NNF due to the order of steps we have followed. Step 4: skolemization # Step 4: skolemization Skolemization removes \exists quantifiers from prenex sentences and only \forall quantifiers are left. ### Example 16.2 Let us suppose. We know "for every man there is a woman". $\forall m. \exists w. Relationship(m, w)$ To satisfy the sentence, we need to find a woman for each man. In other words, there is a function $f: Men \rightarrow Women$. In terms of FOL, we may write $\forall m.Relationship(m, f(m))$ The replacement of \exists by a function is called skolemization and f is called skolem function. ### Introduction of skolem function with free variables #### Theorem 16.5 Let F be a **S**-formula, $FV(F) = \{x, y_1, \dots, y_n\}$ and $f/n \in \mathbf{F}$ does not occur in F. For each model m', there is a model m such that Commentary: m is not with any assignment, which means for any assignment. $$m \models \exists \mathbf{x}.F \Rightarrow F\{\mathbf{x} \mapsto f(y_1,\ldots,y_n)\}.$$ and m and m' only differ on the interpretation of f. ### Proof. Consider a model m'. We will construct m. Before, let us construct an interpretation $f': D_{m'}^n \to D_{m'}$ of f as follows. $$f'(d_1,...,d_n) \triangleq \begin{cases} d & \text{if } m', \{y_1 \mapsto d_1,...,y_n \mapsto d_n\} \models \exists x.F, \\ & \text{Choose } d \in D_{m'} \text{ such that } m', \{y_1 \mapsto d_1,...,y_n \mapsto d_n, x \mapsto d\} \models F \\ d & \text{otherwise choose any } d \in D_{m'} \end{cases}$$ # Introduction of skolem function with free variables(contd.) ### Proof(contd.) Let us define $m \triangleq m'[f \mapsto f']$. Since f does not occur in F, if $m, \nu \models \exists x.F$ then $m', \nu \models \exists x.F$. Due to the construction of m, $$m, \nu \models F\{x \mapsto f(y_1, \dots, y_n)\}_{\text{(why?)}}.$$ ### Exercise 16.7 Show there is m such that $m \models F\{x \mapsto f(y_1, ..., y_n)\} \Rightarrow \forall x.F$ # Introduction of skolem functions under quantifiers ### Theorem 16.6 Let F(x) be a (F,R)-formula with $FV(F) = \{x, y_1, \dots, y_n\}$ and $f/n \in F$ such that f does not occur in F(x). $$\forall y_1, \dots, y_n. \exists x. F(x)$$ is sat iff $\forall y_1, \dots, y_n. F(f(y_1, \dots, y_n))$ is sat # Proof. Forward direction: Assume $m' \models \forall y_1, ...y_n. \exists x. F(x)$. Therefore, $m' \models \exists x. F(x)_{\text{(why?)}}$. Due to the last theorem, there is m such that $m \models \exists x. F(x) \Rightarrow F(f(y_1, \dots, y_n))$. Since m and m' only differ on f, $m \models \exists x. F(x)$. Therefore, $$m \models F(f(y_1,..,y_n))$$. Therefore, $m \models \forall y_1,...,y_n$. $F(f(y_1,..,y_n))$. # Introduction of skolem functions under quantifiers(contd.) ### Proof ### Reverse direction 1. $$\{\forall y_1, \ldots, y_n. F(f(y_1, \ldots, y_n))\} \vdash \forall y_1, \ldots, y_n. F(f(y_1, \ldots, y_n))\}$$ 2. $$\{\forall y_1, ..., y_n. F(f(y_1, ..., y_n))\} \vdash F(f(y_1, ..., y_n))$$ 3. $$\{\forall y_1,\ldots,y_n.\ F(f(y_1,\ldots,y_n))\} \vdash \exists x.F(x)$$ 4. $$\{\forall y_1,\ldots,y_n.\ F(f(y_1,\ldots,y_n))\} \vdash \forall y_1,\ldots,y_n.\ \exists x.F(x)$$ Assumption ∀-Elim ∃-Intro ∀-Intro # Skolemization of prenex sentence Since the quantifiers are in prenex form, all ∃s can be removed using skolem functions. Skolemization should be applied from out to inside, i.e., # remove outermost \exists first. ### Example 16.3 Let us skolemize the following sentence - $\exists z. \forall w. \exists x. \forall y. (R(x,y) \land (\neg R(w,z) \lor \neg P(w)))$ - ▶ Since there are no universals before $\exists z$, we introduce a function c/0. $\forall w.\exists x. \forall y. (R(x,y) \land (\neg R(w,c) \lor \neg P(w)))$ - ▶ Since there is a universal $\forall w$ before $\exists x$, we introduce a function f/1. $\forall w. \forall y. (R(f(w), y) \land (\neg R(w, c) \lor \neg P(w)))$ Step 5-6: FOL CNF # Step 5: convert body of the sentence to CNF Consider skolemized prenex sentence $\forall x_1, \dots, x_n$. *F*. Since F is quantifier-free, we can use propositional logic methods to convert F into CNF $$\forall x_1,\ldots,x_n.\ C_1\wedge\cdots\wedge C_k.$$ ### Example 16.4 In our running example, the body of the sentence was already in CNF $$\forall w. \forall y. (R(f(w), y) \land (\neg R(w, c) \lor \neg P(w))).$$ ### Exercise 16.8 We may use Tseitin encoding to obtain CNF, which introduces fresh propositional predicates. Is there a quantifier over the propositional predicates? (Hint: there are no propositional variables in FOL and we cannot quantify over # Step 6: drop of explicit mention of quantifiers Consider skolemized prenex clauses $\forall x_1, \ldots, x_n. \ C_1 \wedge \cdots \wedge C_k.$ Since \forall distributes over \land , we translate to $$(\forall x_1,\ldots,x_n.\ C_1) \wedge \cdots \wedge (\forall x_1,\ldots,x_n.\ C_k).$$ We may view the above sentence as conjunction of clauses $$C_1 \wedge \cdots \wedge C_k$$, Since clauses have different quantifiers, even if two clauses share a variable name, they are referring to different variables. without any explicit mention of quantifiers. Since we started with sentences, we will assume that the free variables are universally quantified. ### Example 16.5 We write the sentence as $R(f(w), y) \wedge (\neg R(w, c) \vee \neg P(w))$ **Commentary:** Observe that both the occurrences of w in $(\neg R(w,c) \lor \neg P(w))$ refer to same variable. However, the w in R(f(w),y) is a different variable from the w in $(\neg R(w,c) \lor \neg P(w))$ **Problems** ### Skolemization ### Exercise 16.9 Demonstrate that skolemization does not produce equivalent formula. ### Minimize skolem functions #### Exercise 16.10 The order of quantifiers determines the number of parameters in the skolem functions. Give a greedy and efficient(linear) strategy for producing prenex formula such that the total number of parameters in skolem functions is minimal? ### **FOL CNF** ### Exercise 16.11 Convert the following formulas in FOL CNF - $\exists z. (\exists x. Q(x,z) \lor \exists x. P(x)) \Rightarrow \neg (\neg \exists x. P(x) \land \forall x. \exists z. Q(z,x))$ ### Convert into CNF #### Exercise 16.12 Consider the following formulas $$\Sigma = \{ \forall x, y, z. \ (z \in x \Leftrightarrow z \in y) \Rightarrow x \approx y, \\ \forall x, y. \ (x \subseteq y \Leftrightarrow \forall z. \ (z \in x \Rightarrow z \in y)), \\ \forall x, y, z. \ (z \in x - y \Leftrightarrow (z \in x \land z \notin y)) \}.$$ Convert the following formula into FOL CNF. $$\bigwedge \Sigma \wedge \neg \forall x, y. \ (x \subseteq y \Rightarrow \exists z. (y - z \approx x))$$ ### Theorem prover #### Exercise 16 13 Download EPROVER a first order theorem prover from the following web page. http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/Usage.html Run the prover to prove the validity of the following sentence. $$\forall x. \exists y. \forall z. \exists w. (R(x,y) \lor \neg R(w,z))$$ Report the proof generated by the prover. Explain the proof steps. Extra slides: proofs for pulling negations out Monotonic applied to 1 propositional rules applied to 3 propositional rules applied to 6 and $7 \square$ \forall -Elim applied to 2 Contra applied to 4 ∃-Elim applied to 5 Theorem 16.7 If we have $\Sigma \vdash \forall x. F(x)$, we can prove $\Sigma \vdash \neg \exists x. \neg F(x)$. # Proof. 1. $$\Sigma \vdash \forall x.F(x)$$ 2. $$\Sigma \cup \{\neg F(x)\} \vdash \forall x.F(x)$$ 3. $$\Sigma \cup \{\neg F(x)\} \vdash F(x)$$ 4. $$\Sigma \cup \{\neg F(x)\} \vdash \neg F(x) \land F(x)$$ 5. $$\Sigma \vdash \neg F(x) \Rightarrow c \neq c$$ 6. $\Sigma \vdash \exists x \neg F(x) \Rightarrow c \neq c$ 6. $$\Sigma \vdash \exists x. \neg F(x) \Rightarrow c \neq c$$ 7. $\Sigma \vdash c = c$ 8. $$\Sigma \vdash \neg \exists x. \neg F(x)$$ @(P)(S)(9) Exercise 16.14 CS228 Logic for Computer Science 2022 IITB, India Reflex Premise # End of Lecture 16