
cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs 2023

Lecture 7: Thinking concurrency

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2023-01-28

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 2

Topic 7.1

Concurrency

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 3

We all have multicore machines

1. All on same chip

2. Shared memory

3. Number of cores are ever increasing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 4

Cores were bigger and programs ran faster

Moore’s law: every year we bought faster computers.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 5

Cores were bigger and programs ran faster

Moore’s law: every year we bought faster computers.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 6

More cores and programs got stuck...

▶ Speedup is not is sublinear

▶ Cores are waiting on each other

▶ Synchronization needs a careful design

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 7

Sequential vs concurrent

▶ One processor is working on memory

▶ Multiple processor is working on shared memory

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 8

Asynchronous

Unpredictable delays

▶ Chache misses

▶ Page fault

▶ Waiting to be scheduled

▶ killed process

Exercise 7.1
What are the expected delays in the above conditions?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 9

Concurrency jargon

We will consider the following synonymous.

▶ Processors

▶ Threads

▶ Process

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 10

Topic 7.2

An example

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 11

Example: concurrent primality testing

▶ Objective : print primes from 1 to 1010

▶ Resources : 10 processors; one thread per processor

▶ Goal: Get 10 fold speedup

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 12

EvenPrime: divide the load in equal parts

▶ Each thread tests range of 109

void evenPrime {

int i = thread.getId (); // IDs in {0..9}

for(int j = i*10^9 +1, j<(i+1)*10^9 ; j++) {

if(isPrime(j))

print(j);

}

}

▶ Higher ranges have fewer primes and larger numbers harder to test

▶ Thread workloads: actually uneven and hard to predict

▶ Need dynamic load balancing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 13

DynamicPrime: free threads get a number

int counter = 1; // global - lives in shared memory

// code of each thread

void dynamicPrime {

long j = 0;

while (j < 10^10) { // stop when all values taken

j = counter ++;

if(isPrime(j))

print(j);

}

}

Exercise 7.2
Will the above really stop at 109?

counter++ is not atomic.
Does not work for concurrent threads

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 14

Implementation of counter++

Running in each thread:

tmp = counter; // global read

counter = tmp +1; // global write

j = tmp; // local

An undesirable execution:

thread0: Rcounter =1

thread1: Rcounter =1

thread1: Wcounter =2

thread0: Wcounter =2

Notation of Memory events:

R/W<VariableName>=<Value>

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 15

A hardware fix of the problem.

If somehow we can glue the following read and write events.

tmp = counter; // global read

counter = tmp +1; // global write

Modern processor provide ReadModifyWrite instruction for this task.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 16

Algorithmic mutual exclusion

Let us suppose we do not have such an instruction.

We need to ensure that the processes do not interfere each other.

Let us develop ideas that allow us to implement mutual exclusion without special instruction.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 17

Topic 7.3

The fable - by Maurice Herlihy and Nir Shavit

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 18

The fable: Alice and bob share a pond

▶ Both Alice and Bob have pets

▶ Pets hate each other

Alice Bob

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 19

Two kind of requirements

▶ Safety : nothing bad happens
▶ Both pets never in the pond at the same time. Mutual exclusion

▶ Liveness: something good eventually happens
▶ If only one wants in, it gets in starvation-free
▶ If both wants in, one gets in deadlock-free

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 20

Simple protocol

Protocol:

▶ Look at the pond

▶ Release pet in the pond

Issues:

▶ Looking and release are not atomic

▶ They may not be fully visible to each other.

Lessons:

▶ Threads cannot see internal actions of each other.

▶ Explicit communication required

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 21

Phone protocol

Protocol:

▶ They call each other.

▶ Only after a permission, they put their pet in.

Issues:

▶ Bob is taking shower when Alice called

▶ Alice may be dead when Bob called.

Lessons:

▶ Recipient thread may be busy or killed

▶ Communication must be persistent (like writing) not transient (like talking)

▶ Message passing does not work

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 22

Can protocol

Protocol:

▶ Cans on the windowsill of Alice

▶ Strings attached to the cans go to Bob’s house

▶ Bob pulls the string and knocks over the cans.

Issues:

▶ Cans cannot be used again(why?)

▶ Bob runs out of cans.

Lessons:

▶ Interrupts (sender sets and receiver resets when ready) cannot solve mutual exclusion

▶ Needs unbound interrupt bits

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 23

Flag protocol: both have flags

▶ They can raise and lower their flags.

▶ Both can see each other’s flags.

Alice Bob

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 24

Flag protocol: access for alice
1. Raise flag

2. Wait until Bob’s flag is down

3. Release pet

4. Lower flag when pet returns

Alice Bob

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 25

Flag protocol: access for Bob
1. Raise flag

2. Wait until Alice’s flag is down

3. Release pet

4. Lower flag when pet returns

Exercise 7.3
Can we swap instructions 1
and 2 in both or in one?

Alice Bob

Deadlock possible

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 26

2nd Flag protocol for Bob to avoid deadlock

1. Raise flag

2. While Alice’s flag is up
▶ Lower flag
▶ Wait for Alice’s flag to go down
▶ Raise flag

3. Unleash pet

4. Lower flag when pet returns

Alice has priority. Starvation
for Bob is possible

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 27

Proving mutual exclusion in 2nd flag protocol
pre: aF := bF := 0

thread Alice:

a1:aF = 1

a2:while(bF ==1);

a3:..// critical

a4:aF := 0

||

thread Bob:

b1:bF := 1

b2:while(aF ==1){

b3: bF := 0

b4: while(aF ==1);

b5: bF := 1

b6:}

b7:..// critical

b8:bF := 0

There cannot be a cycle in the trace drawing.
Therefore, the trace is impossible.

Violating execution:
Assume threads reached critical

section at the same time.
...

WaF = 1

RbF = 1

...

RbF = 0

critical

...

WbF = 1

RaF = 0

critical

po
rf

fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 28

What is fr?

WaF = 0

WaF = 1

po
RaF = 0

rf

fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 29

Proving deadlock freedom in 2nd flag protocol

pre: aF := bF := 0

thread Alice:

a1:aF = 1

a2:while(bF ==1);

a3:..// critical

a4:aF := 0

||

thread Bob:

b1:bF := 1

b2:while(aF ==1){

b3: bF := 0

b4: while(aF ==1);

b5: bF := 1

b6:}

b7:..// critical

b8:bF := 0

b3 cannot happen after infinitely many events a2,a2,...

Violating execution: Assume
both threads are stuck in lassos

...

a1 :WaF = 1

a2 :RbF = 1

a2 :RbF = 1

...

...

b1 :WbF = 1

b2 :RaF = 1

b3 :WbF = 0

b4 :RaF = 1

b4 :RaF = 1

...

po
rf

fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 30

End of Lecture 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Concurrency
	An example
	The fable - by Maurice Herlihy and Nir Shavit

