
cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs 2023

Lecture 19: Bounded model-checking for concurrent programs

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2023-02-07

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 2

Limited verification

Full verification is a very hard goal.

Soundiness: May be reduced objectives give us reasonable guarantees.

We will look at a popular method that have been widely used.

Bounded model checking(BMC)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 3

Topic 19.1

Basics of BMC

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 4

BMC

We get a program and a property as input.

We verify that the program does not violate the property in a given number of steps.

Only only consider safety. No liveness properties such as starvation or deadlock.(why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 5

Implementing BMC

The program goes via several transformation steps.

1. Loop unrolling

2. SSA renaming

3. Translation to a giant formula

4. Use a sat solver to check the property.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 6

Step 1: Bounding using loop unrolling

▶ Unroll the loops a fixed number of times, say n, and add appropriate if-conditions for early
exists from the loop.

▶ Modify recursive function calls similarly

In some execution of the original program, if a loop executes more than n times then the modified
program will reach a dead end.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 7

Example: bounded loop unrolling

Example 19.1

Original program
x=0;

while (x < 2) {

y=y+x;

x++;

assert( y < 5);

}

Let us unroll the loop three times.

x=0;

if(x < 2) {

y=y+x;

x++;

assert( y < 5);

if(x < 2) {

y=y+x;

x++;

assert( y < 5);

if(x < 2) {

y=y+x;

x++;

assert( y < 5);

if( (x < 2) ) goto DEAD_END;

}

}

}

The program transformation does not pay
attention to the logic of the program. It sim-
ply unrolls even if there are fewer iterations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 8

Step 2 : SSA encoding and SMT formula
The loop free program is translated into single static assignment(SSA) form.
▶ After every assignment fresh names are given to the variables
▶ At join points instructions are added to feed in correct values

Example 19.2

Original program
foo(x,y) {

x=x+y;

if (x!=1)

x=2;

else

x++;

assert(x<=3);

}

Program after SSA transformation

foo(x0 ,y0) {

x1 = x0 + y0;

if( x1 != 1 ){

path_b = 1

x2 = 2;

}else{

path_b = 0

x3 = x1 + 1;

}

x4 = path_b ? x2 : x3;

assert( x4 <= 3 );

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 9

Step 3: SSA to SMT formula
An SSA program can be easily translated into a formula.

Example 19.3

Original program

foo(x0 ,y0) {

x1 = x0 + y0;

if( x1 != 1 )

path_b = 1

x2 = 2;

else

path_b = 0

x3 = x1 + 1;

x4=path_b?x2:x3;

assert(x4 <= 3);

}

QF BV formula for the SSA program

(assert (= x1 (bvadd x0 y0) ) )

(assert (= x2 #x00000002) )

(assert (= x3 (bvadd x1 #x00000001 )) )

(assert (= path_b (distinct x1 1))

(assert (ite path_b (= x4 x2) (= x4 x3)) )

(assert (not (bvsle x4 3) ) )

If the above is sat, the program has a bug

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 10

Step 4: SMT Input
The SMT input with all the needed declarations.

(set-logic QF_BV)

(declare-fun x0 () (_ BitVec 32))

(declare-fun x1 () (_ BitVec 32))

(declare-fun x2 () (_ BitVec 32))

(declare-fun x3 () (_ BitVec 32))

(declare-fun x4 () (_ BitVec 32))

(declare-fun y0 () (_ BitVec 32))

(declare-fun path_b () (Bool))

(assert (= x1 (bvadd x0 y0) ) )

(assert (= x2 #x00000002) )

(assert (= x3 (bvadd x1 #x00000001) ) )

(assert (= path_b (distinct x1 #x00000001) ) )

(assert (ite path_b (= x4 x2) (= x4 x3)) )

(assert (not (bvsle x4 #x00000003) ) )

(check-sat)

Let us feed the
problem to Z3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 11

An effective technology

▶ There are very successful BMC tools, e. g., CBMC

▶ Not a full verification method, but somewhat better than testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 12

Topic 19.2

Concurrent BMC

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 13

BMC for concurrent programs

▶ Full verification of concurrent programs is even more hard.

▶ Most tools use some form of Bounded verification

▶ Let us see how to do BMC for a concurrent program

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 14

Set of Events

An execution of program generates a set of read/write events E .

We define a relation po over E as follows.

Definition 19.1
For e1, e2 ∈ E, (e1, e2) ∈ po if e1 was generated before e2 by the same thread.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 15

Memory operation relation

The read write operations create the following relations ⊆ E × E .

▶ rf : every read reads from exactly one write

▶ ws : all writes on a global are totally ordered

▶ fr : no other write comes between the write-read pairs in rf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 16

Recall: Execution relations and condition

We have the following relations over events.

▶ po program order

▶ rf read from

▶ ws write serialization

▶ fr from read

Theorem 19.1
In a valid execution, po ∪ rf ∪ ws ∪ fr is acyclic

We need to encode the acyclic requirement using integer. Every event will get a distinct integer
time point.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 17

Example: execution

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post: (a1=1 && a2=1)⇒c1+c2=2*v

Invalid execution:

w1

w2

w3

w4

pre

r1

r2

r3

r4

popo

ws
rf

fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 18

Constraints generation

If we want to do bounded model checking, we not only need to encode the behavior of a thread
but also the concurrent interaction.

The formula F that encodes violating executions has following parts

1. Fpo = program ordering constraints

2. Fssa = SSA formula

3. Frf = well-formed rf

4. Ffr = fr constraints

Let us discuss the constraints in detail.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 19

po condition (Fpo)
We need to encode the intra-thread order of events.

We use integer variables to encode the timing of the events. Integer variable

tw3
encodes the time when the write at w3 occurred.

w1.Wx = 0

r1.Ry = 0

po
tw1 < tr1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 20

Example: Fpo

Example 19.4

Let us consider our example again.

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post:(a1=1&&a2=1)⇒c1+c2=2*v

Fpo consists of the following formulas.

po for T1:
tpre.m1 < tw1 ∧ tpre.s1 < tw1∧ tpre.m2 < tw1 ∧ tpre.s2 < tw1∧

tw1 < tw2 < tw3 < tw4

po for T2:
tpre.m1 < tr1 ∧ tpre.s1 < tr1∧ tpre.m2 < tr1 ∧ tpre.s2 < tr1∧

tr1 < tr2 < tr3 < tr4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 21

SSA formula(Fssa)

We translate each loop free thread into single static assignment(SSA) form.

▶ fresh names to the local variables after every assignment

▶ add instructions at join points to feed in correct values

▶ give a fresh name at each read and write of global variables

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 22

Example : Fssa

Example 19.5

Let us consider our example again.

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post:(a1=1&&a2=1)⇒c1+c2=2*v

Fssa consists of the following formulas.

The SSA encoding of pre condition.

W.pre.m1 = 0 ∧ W.pre.s1 = 0∧W.pre.m2 = 0∧W.pre.s2 = 0

SSA encoding of thread T1.

W.w1.m1 = v∧W.w2.m2 = v ∧ W.w3.s1 = 1 ∧ W.w4.s2 = 1

SSA encoding of thread T2.

a1 = R.r1.s1 ∧ c1 = R.r2.m1 ∧ a2 = R.r3.s2∧c2 = R.r4.m2

SSA encoding of post condition.

¬((a1 = 1 ∧ a2 = 1) ⇒ c1+ c2 = 2v)
Locals are not given fresh names
because they are not modified.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 23

Frf : Well-formed rf
Every read reads from exactly one write and the write happens before the read.

We need to introduce a Boolean variable for each potential write-read pair.Boolean

bw.r.s1
indicates that the read at location r of variable x is reading from the write at w.

w : x := ..

r : .. := x

rf
bw.r.x ⇒ (w.x = r.x ∧ tw < tr)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 24

Example: Frf

Example 19.6

Let us consider our example again.

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post:(a1=1&&a2=1)⇒c1+c2=2*v

Consider the read of s1 at r1. It may read from two writes,
which are write at pre and w3.

This is encoded as follows.

▶ Read from exactly one.
(bpre.r1.s1 ∨ bw3.r1.s1)

▶ If reads from pre

bpre.r1.s1 ⇒ (W.pre.s1 = R.r1.s1 ∧ tpre.s1 < tr1)

▶ If reads from w3

bw3.r1.s1 ⇒ (W.w3.s1 = R.r1.s1 ∧ tw3 < tr1)

Exercise 19.1
Is exactly one write encoding correct?

Similar constraints are
generated for each read.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 25

Ffr : relation between ws and fr

If

▶ read r is reading from write w1 and

▶ write w2 is serialized after w1

then w2 is after read r.

w1 : x := ..

w2 : x := ..

ws r : .. := x

rf

fr

bw1.r.x ∧ tw1 < tw2 ⇒ tr < tw2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 26

Example:

Example 19.7

Let us consider our example again.

pre: m1 := s1 := m2 := s2 := 0

thread T1:

w1: m1 := v

w2: m2 := v

w3: s1 := 1

w4: s2 := 1

||

thread T2:

r1: a1 := s1

r2: c1 := m1

r3: a2 := s2

r4: c2 := m2

post:(a1=1&&a2=1)⇒c1+c2=2*v

Here are the fr constraints.

▶ When r1 reads from pre

(bpre.r1.s1 ∧ tpre.s1 < tw3 ⇒ tr1 < tw3)

▶ When r1 reads from w3

(bw3.r1.s1 ∧ tw3 < tpre.s1 ⇒ tr1 < tpre.s1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 27

End of Lecture 19

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Basics of BMC
	Concurrent BMC

