
cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs 2023

Lecture 5: Concurrent objects

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2023-02-13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 2

Topic 5.1

Concurrent objects

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 3

Conurrent libraries

▶ We often do not write low-level concurrent code ourselves

▶ Concurrency is usually handled by concurrent libraries

▶ We only call the functions of the libraries; library code negotiates concurrent access.

▶ They provide interface to abstract concurrent objects such as : stacks, queues, sets, etc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 4

Concurrent objects

Definition 5.1
A concurrent object is a data structure that can be modified by multiple threads and provides an
interface with certain guarantees.

Example 5.1

A concurrent queue can store a collection of things. Threads can call the following functions.

▶ enq(e) – adds element e in the collection

▶ e = deq() – removes element e in the collection

The elements enter/leave the collection in FIFO order.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 5

Example: LockQueue

int head = 0, tail 0; // always increasing

Object items[CAP]; // some size

Lock lock; // guarded by lock

Object deq() {

l.lock ();

if (tail == head) { // Queue is empty

l.unlock ();

throw Empty;

}

x = items[head % CAP]; // pick from store

head ++; // remove an element

l.unlock (); // release lock

return x;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 6

LockQueue: enq

void enq(Object x) {

l.lock ();

if (tail -head == CAP) { // Queue is full

l.unlock ();

throw Full;

}

items[tail % CAP] = x; // place in store

tail ++; // insert element

l.unlock (); // release lock

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 7

Why is Lockqueue a queue?

▶ Due to lock, one thread accesses data at a time

▶ We can intuitively see it is a queue. We will see the formal definition.

Let us make things complicated. Let us drop Locks!!!

Locks ⇒ waiting

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 8

Example: LockFreeQueue

int head = 0, tail 0; // always increasing

Object items[CAP]; // some size

Object deq() {

if(tail == head) throw Empty; // Queue is empty

x = items[head % CAP];head ++; // remove an element

return x;

}

void enq(Object x) {

if (tail -head == CAP) throw Full; // Queue is full

items[tail % CAP] = x;tail ++; // insert element

}

Is the above a queue? No exclusive
access

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 9

LockFreeQueue: single enq and single deq

In general, LockFreeQueue may not be a queue.

Example 5.2

A bad interleaving between two concurrent enq.

enq1: items [0] = x1;

enq2: items [0] = x2;

enq1: tail = 1

enq2: tail = 1

Let us consider a scenario, where there is one thread for enqueue and one for dequeue.

Is LockFreeQueue a queue in the restrictive
setting?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 10

LockFreeQueue is a queue
Assume exception were not thrown.

The following proves invariants at various program locations.

{0 ≤ tail− head ≤ CAP}
Loop : · · · = deq()

{0 ≤ tail− head ≤ CAP}
0 : if(head == tail)

{P : 0 < tail− head ≤ CAP}
1 : x = items[head%CAP];

{0 < tail− head ≤ CAP}
2 : head++;

{0 ≤ tail− head ≤ CAP}

||

Loop : enq(x)
{0 ≤ tail− head ≤ CAP}

0 : if(tail− head ̸= CAP);
{Q : 0 ≤ tail− head < CAP}

1 : items[tail%CAP] = x;
{0 ≤ tail− head < CAP}

2 : tail++;
{0 ≤ tail− head ≤ CAP}

{0 ≤ tail− head ≤ CAP}

Exercise 5.1
Verify interference checks.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 11

LockFreeQueue is a queue

If both the threads about to execute updates on items .

{P : 0 < tail− head ≤ CAP}
1 : x = items[head%CAP];

|| {Q : 0 ≤ tail− head < CAP}
1 : items[tail%CAP] = x;

Both the invariants have to be true, i.e., P ∧ Q = 0 < tail− head < CAP

Therefore, tail%CAP ̸= head%CAP

Therefore, they do not have race condition over elements of items.

Therefore, the enq() and deq() will always behave as if they run one after another.

How do we decide who ran first?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 12

LockFreeQueue : who ran first?

Usually writes are commit points, where a call to the interface says to the world that it is done.

{0 < tail− head ≤ CAP}
2 : head++;

|| {0 ≤ tail− head < CAP}
2 : tail++;

The thread that executed their update statement first ran first.

Why are the writes the commit point?

We need to look at LockFreeQueue more precisely.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 13

Machine accurate LockFreeQueue

int head = 0, tail = 0; Object items[CAP];

Object deq() {

l_tail = tail;

l_head = head;

if(l_tail == l_head) throw Empty;

x = items[l_head % CAP];

head = l_head + 1;

return x;

}

void enq(Object x) {

l_tail = tail;

l_head = head;

if (l_tail -l_head == CAP) throw Full;

items[l_tail % CAP] = x;

tail = l_tail + 1;

}

Data is first copied to locals then used.
At the end result is copied to globals

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 14

Read write pattern in LockFreeQueue

Two reads and a write in each call.

deq()

...

Rheadi

Rtaili

Wheadi

...

enq()

...

Rtailj

Rheadj

Wtailj

...

porf

If Wheadi and Wtailj are ordered according to (po ∪ rf ∪ ws ∪ fr)+ then then we run them in
same order in sequential version. Otherwise, we can choose any order.

Rheadi means
read in ith call.

dashed rf are the
possible reads

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 15

Proof technique (vague overview)

▶ In an algorithm, identify data and control variables.
▶ Control variables control the flow of execution and decide when to update data
▶ Data simply stores the data

▶ Find invariants at all locations that show that there is no race over data variables.

▶ Show that in all executions we can linearize: identify points where each thread committed.

▶ Compare the linearized execution with a reference implementation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 16

Topic 5.2

Michel & scott queue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 17

Example: Michel & scott queue

▶ Let us look at a real lock-free queue

▶ Data is stored at linked list

▶ tail is lazily updated

▶ Needs help of CAS instruction from hardware

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 18

Compare-and-swap(CAS)

CAS instruction is atomic and has the following effect.

bool CAS(p, old_val , new_val) {

if(*p == old_val) {

*p = new_val;

return true; // update and return true

}

return false; // do nothing and return false

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 19

Michel & scott queue: initialization

struct Node = { Object data , Node* next; }

Node* head , tail;

initialize () {

node = new Node() // Allocate a free node

node ->next = NULL // Make it the only node in the list

head = tail = node // Both Head and Tail point to it

}

v1 v2 v3 v4 NULL

head tail

Lazy tail may not
point at the end

Eager head points
at the start

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 20

Michel & scott enqueue

enq(Object x){

node = new node (); node ->data = x; node ->next = NULL;// Allocate node

while (1) { //try until done

l_tail = tail;l_next = l_tail ->next //read queue state

if(l_next == NULL) { // really a tail?

if(CAS (&(l_tail ->next), l_next , node)) {//try to insert

CAS(&tail , l_tail , node); //may return false

return;

}

}else{ // tail is not at the end. ODD!! :-(

CAS(&tail , l_tail , l_next) // correcting failures

}

}

} // Enqueue done.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 21

Michel & scott dequeue

Object dequeue (){

while (1){ // try until done

l_head = head

l_tail = tail

l_next = l_head ->next // read queue state

if(l_head != l_tail) {

v = l_next ->value // Read value before CAS (why?)

if(CAS(&head , l_head , next)) return v;// dequeue done

}else{

if(l_next == NULL) return NULL; // queue is empty

CAS(&tail , l_tail , l_next) // Try to advance tail

}

}

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 22

Topic 5.3

UnboundedQueue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 23

Example: UnboundedQueue
Here is an another concurrent implementation of queue

Vector q;

void* enq(int x) { // x > 0

q.push_back(x)

}

int deq() {

while(true) {

l = q.length ()

for(i = 0 ; i < l; i ++) {

atomic{ x=q[i]; q[i]=0; } // atomic

if (x != 0) return x;

}

}

}

Is the above a queue?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs 2023 Instructor: Ashutosh Gupta IITB, India 24

End of Lecture 5

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Concurrent objects
	Michel & scott queue
	UnboundedQueue

